based on several off line analytics we are studying
how to modify the analytical workflow adopting the
solutions coming from the emerging field of Progres-
sive Visual Analytics (see, e.g., (Schulz et al., 2016)).
REFERENCES
Basole, R. C., Braunstein, M. L., Kumar, V., Park, H.,
Kahng, M., Chau, D. H. P., Tamersoy, A., Hirsh,
D. A., Serban, N., Bost, J., Lesnick, B., Schissel,
B. L., and Thompson, M. (2015). Understanding
variations in pediatric asthma care processes in the
emergency department using visual analytics. Jour-
nal of the American Medical Informatics Association,
22(2):318–323.
Berger, P., Chegini, M., Schumann, H., and Tominski, C.
(2008). Integrated visualization of structure and at-
tribute similarity of multivariate graphs.
Bottomly, D., McWeeney, S. K., and Wilmot, B. (2016).
Hitwalker2: visual analytics for precision medicine
and beyond. Bioinformatics, 32(8):1253–1255.
Cerami, E., Demir, E., Schultz, N., Taylor, B. S., and
Sander, C. (2010). Automated network analysis
identifies core pathways in glioblastoma. PloS one,
5(2):e8918.
Chan, S. Y. and Loscalzo, J. (2012). The emerging
paradigm of network medicine in the study of human
disease. Circulation research, 111(3):359–374.
Chaurasia, G., Malhotra, S., Russ, J., Schnoegl, S., Hnig,
C., Wanker, E. E., and Futschik, M. E. (2009). Unihi
4: new tools for query, analysis and visualization of
the human proteinprotein interactome. Nucleic Acids
Research, 37(suppl1):D657–D660.
Chittaro, L. (2001). Information visualization and its appli-
cation to medicine. Artificial intelligence in medicine,
22(2):81–88.
Dietzsch, J., Heinrich, J., Nieselt, K., and Bartz, D. (2009).
Spray: A visual analytics approach for gene expres-
sion data. In 2009 IEEE Symposium on Visual Analyt-
ics Science and Technology, pages 179–186.
Gerasch, A., Faber, D., K
¨
untzer, J., Niermann, P.,
Kohlbacher, O., Lenhof, H.-P., and Kaufmann, M.
(2014). Bina: a visual analytics tool for biological
network data. PloS one, 9(2):e87397.
Ghoniem, M., Fekete, J.-D., and Castagliola, P. (2004). A
comparison of the readability of graphs using node-
link and matrix-based representations. In INFOVIS
2004. IEEE Symposium on, pages 17–24. Ieee.
Gladilin, E. (2017). Graph-theoretical model of global
human interactome reveals enhanced long-range
communicability in cancer networks. PloS one,
12(1):e0170953.
Gustafsson, M., Nestor, C. E., Zhang, H., Barab
´
asi, A.-
L., Baranzini, S., Brunak, S., Chung, K. F., Federoff,
H. J., Gavin, A.-C., Meehan, R. R., et al. (2014). Mod-
ules, networks and systems medicine for understand-
ing disease and aiding diagnosis. Genome medicine,
6(10):82.
Huan, T., Sivachenko, A. Y., Harrison, S. H., and Chen, J. Y.
(2008). Proteolens: a visual analytic tool for multi-
scale database-driven biological network data mining.
BMC Bioinformatics, 9(9):S5.
Khler, S., Bauer, S., Horn, D., and Robinson, P. N. (2008).
Walking the interactome for prioritization of candi-
date disease genes. The American Journal of Human
Genetics, 82(4):949 – 958.
Korcsmaros, T., Schneider, M. V., and Superti-Furga, G.
(2017). Next generation of network medicine: inter-
disciplinary signaling approaches. Integrative Biol-
ogy, 9(2):97–108.
Lu, H., Zhu, X., Liu, H., Skogerb, G., Zhang, J., Zhang, Y.,
Cai, L., Zhao, Y., Sun, S., Xu, J., Bu, D., and Chen, R.
(2004). The interactome as a treean attempt to visu-
alize the proteinprotein interaction network in yeast.
Nucleic Acids Research, 32(16):4804–4811.
Merico, D., Isserlin, R., Stueker, O., Emili, A., and Bader,
G. D. (2010). Enrichment map: a network-based
method for gene-set enrichment visualization and in-
terpretation. PloS one, 5(11):e13984.
Mlecnik, B., Scheideler, M., Hackl, H., Hartler, J., Sanchez-
Cabo, F., and Trajanoski, Z. (2005). Pathwayexplorer:
web service for visualizing high-throughput expres-
sion data on biological pathways. Nucleic Acids Re-
search, 33(suppl2):W633–W637.
Perer, A. and Sun, J. (2012). Matrixflow: temporal net-
work visual analytics to track symptom evolution dur-
ing disease progression. In AMIA annual symposium
proceedings, volume 2012, page 716. American Med-
ical Informatics Association.
Schulz, H.-J., Angelini, M., Santucci, G., and Schumann,
H. (2016). An enhanced visualization process model
for incremental visualization. IEEE transactions
on visualization and computer graphics, 22(7):1830–
1842.
Sharma, A., Menche, J., Huang, C. C., Ort, T., Zhou, X.,
Kitsak, M., Sahni, N., Thibault, D., Voung, L., Guo,
F., et al. (2015). A disease module in the interactome
explains disease heterogeneity, drug response and cap-
tures novel pathways and genes in asthma. Human
molecular genetics, 24(11):3005–3020.
Shneiderman, B., Plaisant, C., and Hesse, B. W. (2013).
Improving healthcare with interactive visualization.
Computer, 46(5):58–66.
Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L., and
Ideker, T. (2011). Cytoscape 2.8: new features for data
integration and network visualization. Bioinformatics,
27(3):431–432.
Tripathi, S., Dehmer, M., and Emmert-Streib, F. (2014).
Netbiov: an r package for visualizing large net-
work data in biology and medicine. Bioinformatics,
30(19):2834–2836.
Vidal, M., Cusick, M., and Barabsi, A.-L. (2011). Interac-
tome networks and human disease. Cell, 144(6):986 –
998.
Wang, T. D., Wongsuphasawat, K., Plaisant, C., and Shnei-
derman, B. (2011). Extracting insights from electronic
health records: Case studies, a visual analytics process
model, and design recommendations. Journal of Med-
ical Systems, 35(5):1135–1152.
NEMESIS (NEtwork MEdicine analySIS): Towards Visual Exploration of Network Medicine Data
329