will perfo rm experiments with clustering algorithms
(such a s k-means), dimensiona lity reduction layers to
match the number of vibration motors, among o ther
techniques that will be investigated .
After having consistent results using the vest in
the laboratory, we plan to perform experiments with
visually impaired users.
ACKNOWLEDGEMENTS
The authors thank Fundo Mackenzie de Pesquisa
(Mack-p esquisa) fr om the Universidade Pre sbiteriana
Mackenzie for the financial support for this research.
REFERENCES
Bach-y-Rita, P., Collins, C. C., Saunders, F. A., White, B.,
and Scadden, L. (1969). Vision substitution by tactile
image projection. 221:963–4.
Bach-y-Rita, P., Kaczmarek, K. A., Tyler, M. E., and
Garcia-Lara, J. (1998). Form perception with a 49-
point electrotactil e stimulus array on the tongue: A
technical note. Journal of Rehabilitation Research
and Developm ent, 35(4):427–430.
Bach-y-Rita, P. and Kercel, S. W. (2003). Sensory substi-
tution and the human–machine interface. Trends in
Cognitive Sciences, 7(12):541 – 546.
Cancar, L., Diaz, A., Barr ientos, A. , Travieso, D., and Ja-
cobs, D. M. (2013). Tactile-Sight: A sensory substitu-
tion device based on distance-related vibrotactile flow
regular paper. International Journal of Advanced Ro-
botic Systems.
Cardin, S., Thalmann, D., and Vexo, F. (2007). A wearable
system for mobility improvement of visually impaired
people. Visual Computer.
Dakopoulos, D. and Bourbakis, N. (2008). Preserving vi-
sual information in low resolution images during navi-
gation of visually impaired. In Proceedings of the 1st
International Conference on PErvasive Technologies
Related to Assistive Environments, PETRA ’08, pages
27:1–27:6, New York, NY, USA. ACM.
Gonz´alez-Mora, J., Hern´andez, A. R., Ramos, L. F. R.,
Dfaz-Saco, L., and Sosa, N. (1999). Development of
a new space perception system for blind people, based
on the creation of a virtual acoustic space.
He, K., Zhang, X., Ren, S. , and Sun, J. (2015). Deep
residual learning f or image recognition. CoRR,
abs/1512.03385.
Hub, A., Diepstraten, J., and Ertl, T. (2004). Design and de-
velopment of an indoor navigation and object identifi-
cation system for the blind. In Proceedings of the 6th
International ACM SIGAC CESS Conference on C om-
puters and Accessibility, Assets ’04, pages 147–152,
New York, NY, USA. ACM.
Johnson, L. A. and Higgins, C. M. (2006). A navigation
aid for the blind using tactile-visual sensory substitu-
tion. In 2006 International C onference of the IEEE
Engineering in Medicine and B iology Society, pages
6289–6292.
Lin, K. W., Lau, T. K., Cheuk, C. M., and Liu, Y. (2012). A
wearable stereo vision system for visually impaired.
In 2012 IEEE International Conference on Mechatro-
nics and Automation, pages 1423–1428.
Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick,
R. B., Hays, J., Perona, P., Ramanan, D., Doll´ar, P.,
and Zitnick, C. L. (2014). Microsoft COCO: common
objects in context. CoRR, abs/1405.0312.
Liu, W., Anguelov, D., Er han, D., Szegedy, C., Reed, S. E.,
Fu, C., and Berg, A. C. (2015). SSD: single shot mul-
tibox detector. CoRR, abs/1512.02325.
Meers, S. and Ward, K. (2005). A substitute vision system
for providing 3 d perception and gps navigation via
electro-tactile stimulation.
Meijer, P. B. L. (1992). An experimental system for au-
ditory image representations. IEEE Transactions on
Biomedical Engineering, 39(2):112–121.
Novich, S. D. (2015). Sound-to-Touch Sensory Substitution
and Beyond. Master’s thesis, Rice Universit y.
Pereira, M. C. (2006). Sistema de substituic¸ ˜ao sensorial
para aux´ılio a deficientes visuais via t´ecnicas de pro-
cessamento de imagens e estimulac¸ ˜ao cutˆanea. PhD
thesis.
Sainarayanan, G., Nagarajan, R., and Yaacob, S. (2007).
Fuzzy image processing scheme for autonomous navi-
gation of human blind. Appl. Soft Comput., 7(1):257–
264.
Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and
Chen, L. (2018). Mobilenetv2: Inverted residuals and
linear bottlenecks. CoRR, abs/1801.04381.
Stronks, H. C., Mitchell, E. B., Nau, A . C., and Barnes, N.
(2016). Visual task performance in the blind with the
BrainPort V 100 Vision Aid.
Tapu, R., Mocanu, B., and Tapu, E. (2014). A survey on we-
arable devices used to assist the visual impaired user
navigation in outdoor environments. In 2014 11th In-
ternational Symposium on Electronics and Telecom-
munications (ISETC), pages 1–4.
Visell, Y. (2009). Tactile sensory substitution: Models for
enaction in hci. Interact. Comput., 21(1-2):38–53.
World Health Organization (2012).
Zhou, B., Khosla, A., Lapedriza,
`
A., Oliva, A., and
Torralba, A. (2015). Learning deep features for dis-
criminative localization. CoRR, abs/1512.04150.