opinion in ophthalmology, 24(3):213.
Boyer, K. L., Herzog, A., and Roberts, C. (2006). Auto-
matic recovery of the optic nervehead geometry in op-
tical coherence tomography. IEEE Transactions on
Medical Imaging, 25(5):553–570.
Chiu, S. J., Li, X. T., Nicholas, P., Toth, C. a., Izatt, J. a., and
Farsiu, S. (2010). Automatic segmentation of seven
retinal layers in SDOCT images congruent with expert
manual segmentation. Optics express, 18(18):19413–
19428.
Dijkstra, E. W. (1959). A note on two problems in connex-
ion with graphs. Numerische mathematik, 1(1):269–
271.
Dodo, B. I., Li, Y., Eltayef, K., and Liu, X. (2018). Graph-
cut segmentation of retinal layers from oct images. In
Proceedings of the 11th International Joint Confer-
ence on Biomedical Engineering Systems and Tech-
nologies - Volume 2: BIOIMAGING,, pages 35–42.
INSTICC, SciTePress.
Dodo, B. I., Li, Y., and Liu, X. (2017). Retinal oct im-
age segmentation using fuzzy histogram hyperboliza-
tion and continuous max-flow. In 2017 IEEE 30th In-
ternational Symposium on Computer-Based Medical
Systems (CBMS), pages 745–750. IEEE.
Duan, J., Tench, C., Gottlob, I., Proudlock, F., and Bai,
L. (2017). Automated segmentation of retinal lay-
ers from optical coherence tomography images using
geodesic distance. Pattern Recognition, 72:158 – 175.
Garvin, M. K. (2008). Automated 3-D segmentation and
analysis of retinal optical coherence tomography im-
ages. PhD thesis - The University of Iowa.
Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S.,
Stinson, W. G., Chang, W., Hee, M. R., Flotte, T.,
Gregory, K., and Puliafito, C. A. (1991). Optical
coherence tomography. Science (New York, N.Y.),
254(5035):1178–81.
Jaffe, G. J. (2012). OCT of the Macula: An expert provides
a primer on useful scans, identifying artifacts and time
domain vs. spectral domain technology. Reinal Physi-
cian, pages 10–12.
Koozekanani, D., Boyer, K., and Roberts, C. (2001). Reti-
nal thickness measurements from optical coherence
tomography using a Markov boundary model. IEEE
Transactions on Medical Imaging, 20(9):900–916.
Lang, A., Carass, A., Hauser, M., Sotirchos, E. S., Cal-
abresi, P. a., Ying, H. S., and Prince, J. L. (2013).
Retinal layer segmentation of macular OCT images
using boundary classification. Biomedical optics ex-
press, 4(7):1133–52.
Liu, Y., Carass, A., Solomon, S. D., Saidha, S., Calabresi,
P. A., and Prince, J. L. (2018). Multi-layer fast level
set segmentation for macular oct. In 2018 IEEE
15th International Symposium on Biomedical Imaging
(ISBI 2018), pages 1445–1448.
Lu, S., Yim-liu, C., Lim, J. H., Leung, C. K.-s., and Wong,
T. Y. (2011). Automated layer segmentation of op-
tical coherence tomography images. Proceedings -
2011 4th International Conference on Biomedical En-
gineering and Informatics, BMEI 2011, 1(10):142–
146.
Novosel, J., Vermeer, K. A., Thepass, G., Lemij, H. G., and
Vliet, L. J. V. (2013). Loosely Coupled Level Sets
For Retinal Layer Segmentation In Optical Coherence
Tomography. IEEE 10th International Symposium on
Biomedical Imaging, pages 998–1001.
Raftopoulos, R. and Trip, A. (2012). The Application of
Optical Coherence Tomography ( OCT ) in Neurolog-
ical Disease. Advances In Clinincal Neuroscience and
Rehabilitation, 12(2):30–33.
Shi, Y. and Karl, W. C. (2005). A fast level set method
without solving pdes [image segmentation applica-
tions]. In Proceedings. (ICASSP ’05). IEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing, 2005., volume 2, pages ii/97–ii100 Vol. 2.
Sun, Y., Zhang, T., Zhao, Y., and He, Y. (2016). 3d auto-
matic segmentation method for retinal optical coher-
ence tomography volume data using boundary surface
enhancement. Journal of Innovative Optical Health
Sciences, 9(02):1650008.
Tian, J., Varga, B., Somfai, G. M., Lee, W. H., Smiddy,
W. E., and DeBuc, D. C. (2015). Real-time automatic
segmentation of optical coherence tomography vol-
ume data of the macular region. PLoS ONE, 10(8):1–
20.
Tsai, A., Yezzi, A., and Willsky, A. S. (2001). Curve evolu-
tion implementation of the mumford-shah functional
for image segmentation, denoising, interpolation, and
magnification. IEEE Transactions on Image Process-
ing, 10(8):1169–1186.
Vincent, L. (1994). Morphological area openings and clos-
ings for grey-scale images. In Shape in Picture, pages
197–208. Springer.
Wang, C., Wang, Y., Kaba, D., Wang, Z., Liu, X., and Li., Y.
(2015). Automated layer segmentation of 3d macular
images using hybrid methods. In Proc. International
Conference on Image and Graphics. Tianjing, China.,
volume 9217, pages 614–628.
Wang, Q. and Boyer, K. L. (2012). The active geometric
shape model: A new robust deformable shape model
and its applications. Computer Vision and Image Un-
derstanding, 116(12):1178 – 1194.
Yazdanpanah, A., Hamarneh, G., Smith, B. R., and Sarunic,
M. V. (2011). Segmentation of intra-retinal layers
from optical coherence tomography images using an
active contour approach. IEEE Transactions on Med-
ical Imaging, 30:484–496.
BIOIMAGING 2019 - 6th International Conference on Bioimaging
56