Angles, R. and Gutierrez, C. (2008). Survey of graph
database models. ACM Computing Surveys (CSUR).
Ballard, D. and Brown, C. (1982). Computer Vison. Pren-
tice Hall.
Boie, R. and Cox, I. (1987). Two dimensional optimum
edge recognition using matched and wiener filters for
machine vison. Proceedings of IEEE First Interna-
tional Conference on Computer Vison, pages 450–
456.
Bunke, H. and Sanfeliu, A. (2000). Syntactic and Structural
Pattern Recognition: Theory and Applications. World
Scientific.
Canny, J. (1986). A computional approach to edge detec-
tion. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, pages 679–698.
Chen, C. (1973). Statistical pattern recognition. Hayden.
Cheng, J., Ke, Y., and Ng, W. (2009). Efficient query pro-
cessing on graph databases. ACM Trans. Database
Syst.
Devijver, P. and Kittler, J. (1982). Pattern recognition: a
statistical approach. Prentice-Hall.
Dunne, R. (2007). A Statistical Approach to Neural Net-
works for Pattern Recognition. Wiley.
Ehrig, H., Engels, G., Kreowski, H., and Rozenberg, G.
(1999). Handbook of Graph Grammars and Comput-
ing by Graph Transformation. World Scientific.
Flasinski, M. (1989). Characteristics of ednlc-graph gram-
mar for syntactic pattern recognition. Computer Vi-
sion, Graphics, and Image Processing, 47(1):1–21.
Flasinski, M. (2007). Inference of parsable graph gram-
mars for syntactic pattern. Fundamenta Informaticae,
80:379—413.
Flasinski, M. and Myslinski, S. (2010). On the use of
graph parsing for recognition of isolated hand pos-
tures of polish sign language. Pattern Recognition,
43(6):2249–2264.
Forsyth, D. and Ponce, J. (2003). Computer Vision. Prentice
Hall.
Frei, W. and Chen, C. (1977). Fast boundary detection: A
generalization and a new algorithm. IEEE Transac-
tions on Computers, (10):988–998.
Fu, K. (1974). Syntactic Methods in Pattern Recognition,
volume 112 of Mathematics in Science and Engineer-
ing. Academic Press.
Fu, K. (1982). Syntactic pattern recognition and applica-
tions. Prentice Hall.
Fukunaga, K. (1972). Introduction to statistical pattern
recognition. Academic Press.
Fukunaga, K. (1990). Introduction to statistical pattern
recognition. Academic Press.
Gonzales, R. and Thomason, M. (1978). Syntactic meth-
ods in pattern recognition. An introduction. Addisom-
Wesley.
Gonzalez, R. and Woods, R. (2008). Digital Image Process-
ing. Prentice Hall.
Gottler, H. (1983). Attributed graph grammars for graphics.
LNCS, 153:130–142.
Grompone von Goi, R. (2014). A Contrario Line Segment
Detection. Springer.
Hermann, F., Ehrig, H., and Taentzer, G. (2008). A typed
attributed graph grammar with inheritance for the ab-
stract syntax of uml class and sequence diagrams.
Electronic Notes in Theoretical Computer Science,
pages 261–269.
Jiang, L., Song, E., Xu, X., Ma, G., and Zheng, B. (2008).
Automated detection of breast mass spiculation lev-
els and evaluation of scheme performance. Academic
Radiology, 15(12):1534–1544.
Jiang, X. and Bunke, H. (2017). Graph Matching, vol-
ume 73 of Studies in Computional Intelligence, pages
149–173. Springer-Verlag.
Kopans, D. (2007). Breast Imaging. Lippincott Williams &
Wilkins, trzecie edition.
Kotulski, L. and Sedziwy, A. (2011). Parallel graph trans-
formations supported by replicated complementary
graphs. In Proceedings of the 10th International Con-
ference on Adaptive and Natural Computing Algo-
rithms - Volume Part II, ICANNGA’11, pages 254–
264. Springer-Verlag.
Kotulski, L. and Szpyrka, M. (2011). Graph representation
of hierarchical alvis model structure. In FCS 2011 :
proceedings of the 2011 international conference on
Foundations of Computer Science, pages 95–101.
Krylov, V. and Nelson, J. (2014). Stochastic extrac-
tion of elongated curvilinear structures with appli-
cations. IEEE Transactions on Image Processing,
23(12):5360–5373.
Krylov, V., Taylor, S., and Nelson, J. (2013). Stochastic
extraction of elongated curvilinear structures in mam-
mographic images. Springer, pages 475–484.
Kurzynski, M. (1997). Rozpoznawanie obiektow. Metody
statystyczne. Politechnika Wroclawska.
Lazarek, J. (2017). Object detection on digital im-
ages with the use of local data analysis and graph
representation (In Polish: Wykrywanie obiektow na
obrazach cyfrowych z zastosowaniem analizy lokalnej
i reprezentacji grafowych.). PhD thesis, Lodz Univer-
sity of Technology.
Lazarek, J. and Szczepaniak, P. (2014). Information Tech-
nologies in Biomedicine, Volume 3, chapter Line Seg-
ment Based Approach to Pattern Detection in Mam-
mographic Images, pages 37–48. Springer Interna-
tional Publishing.
Lazarek, J. and Szczepaniak, P. (2016). Automatic
Graph-Based Local Edge Detection, pages 397–409.
Springer International Publishing.
Lazarek, J., Tomczyk, A., and Szczepaniak, P. (2014).
Method of pattern detection in mammographic im-
ages. Advances in Intelligent Systems and Computing,
Springer, pages 235–245.
Li, L.-J., Su, H., Fei-Fei, L., and Xing, E. P. (2010). Ob-
ject bank: A high-level image representation for scene
classification & semantic feature sparsification. In
Advances in Neural Information Processing Systems,
pages 1378–1386.
Li, L.-J., Su, H., Lim, Y., and Fei-Fei, L. (2014). Ob-
ject bank: An object-level image representation for
high-level visual recognition. International Journal
of Computer Vision, 107(1):20–39.
Shape Recognition in High-level Image Representations: Data Preparation and Framework of Recognition Method
63