REFERENCES
Abrahams, M. and Colgan, P. (1985). Risk of predation, hy-
drodynamic efficiency, and their influence on school
structure. Environmental Biol. of Fishes, 13(3):195–
202.
Adamatzky, A., Erokhin, V., Grube, M., Schubert, T., and
Schumann, A. (2012). Physarum chip project: Grow-
ing computers from slime mould. International Jour-
nal of Unconventional Computing, 8(4):319–323.
Adamatzky, A. and Ilachinski, A. (2012). Slime mold imi-
tates the united states interstate system. Complex Sys-
tems, 21(1).
Adamatzky, A., Yang, X., and Zhao, Y. (2013). Slime
mould imitates transport networks in china. Interna-
tional Journal of Intelligent Computing and Cybernet-
ics, 6(3):232–251.
Ariel, G., Shklarsh, A., Kalisman, O., Ingham, C., and Ben-
Jacob, E. (2013). From organized internal traffic to
collective navigation of bacterial swarms. New Jour-
nal of Physics, 15:12501.
Aumann, R. J. (1976). Agreeing to disagree. The Annals of
Statistics, 4(6):1236–1239.
Aumann, R. J. (1989). Notes on Interactive Epistemology.
Mimeo. Hebrew University of Jerusalem, Jerusalem.
Ball, P. (2008). Slime mould displays remarkable rhythmic
recall. Nature, 451:385.
Bandura, A. (1982). Self-efficacy mechanism in human
agency. American Psychologist, 37:122–147.
Baum, W. (2005). Understanding behaviorism : Behavior,
culture, and evolution. Blackwell Pub.
Ben-Jacob, E. (2008). Social behavior of bacteria: from
physics to complex organization. European Physical
Journal B, 65(3):315–322.
Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999).
Swarm Intelligence: From Natural to Artificial Sys-
tems. Oxford University Press.
Cheney, C. and Ferster, C. (1997). Schedules of Reinforce-
ment. Copley Publishing Group.
Dimonte, A., Berzina, T., Pavesi, M., and Erokhin,
V. (2014). Hysteresis loop and cross-talk of or-
ganic memristive devices. Microelectronics Journal,
45(11):1396–1400.
Dorigo, M. and Gambardella, L. M. (1997). Ant colonies
for the travelling salesman problem. Biosystems,
43(2):73–81.
Dorigo, M. and Stutzle, T. (2004). Ant Colony Optimiza-
tion. MIT Press.
Erokhin, V. (2013). On the learning of stochastic networks
of organic memristive devices. International Joural
Unconventional Compiting, 9(3-4):303–310.
Erokhin, V., Howard, G. D., and Adamatzky, A. (2012). Or-
ganic memristor devices for logic elements with mem-
ory. International Journal of Bifurcation and Chaos,
22(11).
Frederick, S. (2005). Cognitive reflection and decision mak-
ing. 19(4):24–42.
Gigerenzer, G. and Brighton, H. H. H. (2009). Why bi-
ased minds make better inferences. Topics in Cogni-
tive Scince, 1(1):107–143.
Helbing, D., Farkas, I., and Vicsek, T. (2000). Simu-
lating dynamical features of escape panic. Nature,
407(6803):487–490.
Ingham, C. J. and Ben-Jacob, E. (2008). Swarming and
complex pattern formation in paenibacillus vortex
studied by imaging and tracking cells. BMC Micro-
biology, 36:8.
Ingham, C. J., Kalisman, O., Finkelshtein, A., , and Ben-
Jacob, E. (2011). Mutually facilitated dispersal be-
tween the nonmotile fungus aspergillus fumigatus and
the swarming bacterium paeni bacillus vortex. Pro-
ceedings of the National Academy of Sciences of the
United States of America, 108(49):19731–19736.
Ivanitsky, G. R., Kunisky, A. S., and Tzyganov, M. A.
(1984). Study of ‘target patterns’ in a phage-bacterium
system. In Krinsky, V., editor, Self-organization: Au-
towaves and Structures Far From Equilibrium, pages
214–217. Springer, Heidelberg.
John, A., Schadschneider, A., Chowdhury, D., and Nishi-
nari, K. (2008). Characteristics of ant-inspired traffic
flow. Swarm Intelligence, 2(1):25–41.
Kalogeiton, V. S., Papadopoulos, D. P., Georgilas, I., Sir-
akoulis, G. C., and Adamatzky, A. (2015). Cellu-
lar automaton model of crowd evacuation inspired by
slime mould. International Journal of General Sys-
tems, 44(3):354–391.
Karaboga, D. (2005). An idea based on honey bee swarm
for numerical optimization. Technical report-tr06,
Engineering Faculty, Computer Engineering Depart-
ment, Erciyes University.
Karaboga, D. and Akay, B. (2009). A comparative study of
artificial bee colony algorithm. Applied Mathematics
and Computation, 214(1):108–132.
Kassabalidis, I., El-Sharkawi, M. A., Marks, R. J., Arab-
shahi, P., and Gray, A. A. (2001). Swarm intelligence
for routing in communication networks. In Global
Telecommunications Conference, 2001. GLOBECOM
’01. IEEE, volume 6, pages 3613–3617.
Kennedy, J. and Eberhart, R. (2001). Swarm Intelligence.
Morgan Kaufmann Publishers, Inc.
Margenstern, M. (2011). Bacteria inspired patterns grown
with hyperbolic cellular automata. HPCS, pages 757–
763.
Michener, C. (1969). Comparative social behavior of bees.
Annu. Rev. Entomol., 14:299–342.
Nakagaki, T., Iima, M., Ueda, T., Nishiura, Y., Saigusa, T.,
Tero, A., Kobayashi, R., and Showalter, K. (2007).
Minimum-risk path finding by an adaptive amoeba
network. Physical Review Letters, 99:68–104.
Nakagaki, T., Yamada, H., and Toth, A. (2000). Maze-
solving by an amoeboid organism. Nature, 407:470–
470.
Nakagaki, T., Yamada, H., and Tothm, A. (2001). Path find-
ing by tube morphogenesis in an amoeboid organism.
Biophysical Chemistry, 92:47–52.
Ntinas, V. G., Vourkas, I., Sirakoulis, G. C., and Adamatzky,
A. (2017). Oscillation-based slime mould electronic
From a Swarm to a Biological Computer
257