on Computer Vision Theory and Applications, pages
363–370, Funchal, Madeira, Portugal.
Amorim, P., Moraes, T., Silva, J., and Pedrini, H. (2018b).
Out-of-Core Rendering of Large Volumetric Data Sets
at Multiple Levels of Detail. In Multi-Modality Imag-
ing, pages 191–215. Springer International Publish-
ing.
Blazona, B. and Mihajlovic, Z. (2007). Visualization Ser-
vice Based on Web Services. Journal of Commputing
and Information Technology, 4:339–345.
Cabello, R. (2018). three.js - JavaScript 3D Library.
http://mrdoob.github.com/three.js/.
Carlson, J. L. (2013). Redis in Action. Manning Publica-
tions Co., Greenwich, CT, USA.
Dirksen, J. (2013). Learning Three.js: The JavaScript 3D
Library for WebGL. Packt Publishing Ltd.
Engel, K., Ertl, T., Hastreiter, P., Tomandl, B., and Eber-
hardt, K. (2000). Combining Local and Remote Visu-
alization Techniques for Interactive Volume Render-
ing in Medical Applications. In Conference on Vi-
sualization, pages 449–452. IEEE Computer Society
Press.
Evesque, F., Gerlach, S., and Hersch, R. (2002). Building
3D Anatomical Scenes on the Web. Journal of Visu-
alization and Computer Animation, 13(1):43–52.
Fazanaro, D., Amorim, P., Moraes, T., Silva, J., and Pedrini,
H. (2016). NURBS Parameterization for Medical Sur-
face Reconstruction. Applied Mathematics, 7(2):137–
144.
Fette, I. and Melnikov, A. (2011). The WebSocket Protocol.
RFC 6455 (Proposed Standard).
Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
L., Leach, P., and Berners-Lee, T. (1999). Hypertext
Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Stan-
dard). http://www.ietf.org/rfc/rfc2616.txt.
Garland, M. and Heckbert, P. S. (1997). Surface Simpli-
fication Using Quadric Error Metrics. In 24th An-
nual Conference on Computer Graphics and Interac-
tive Techniques, pages 209–216, Los Angeles, CA,
USA.
GDCM (2018). Grassroots DICOM Library.
http://sourceforge.net/projects/gdcm/.
Grinberg, M. (2018). Flask SocketIO. https://flask-
socketio.readthedocs.io/en/latest/.
InVesalius (2018). Open Source Software for Reconstruc-
tion of Computed Tomography and Magnetic Reso-
nance Images. http://www.cti.gov.br/invesalius/.
Ion, M., Russello, G., and Crispo, B. (2010). Sup-
porting Publication and Subscription Confidentiality
in Pub/Sub Networks. In International Conference
on Security and Privacy in Communication Systems,
pages 272–289, Singapore, Singapore. Springer.
Kaspar, M., Parsad, N., and Silverstein, J. (2013). An Opti-
mized Web-based Approach for Collaborative Stereo-
scopic Medical Visualization. Journal of the Ameri-
can Medical Informatics Association, 20(3):535–543.
Kokelj, Z., Bohaka, C., and Marolt, M. (2018). A web-
based virtual reality environment for medical visual-
ization. In 41st International Convention on Informa-
tion and Communication Technology, Electronics and
Microelectronics, pages 0299–0302.
Lorensen, W. E. and Cline, H. E. (1987). Marching
Cubes: A High Resolution 3D Surface Construction
Algorithm. In 14th Annual Conference on Computer
Graphics and Interactive Techniques, pages 163–169,
New York, NY, USA.
Mahmoudi, S. E., Akhondi-Asl, A., Rahmani, R., Faghih-
Roohi, S., Taimouri, V., Sabouri, A., and Soltanian-
Zadeh, H. (2010). Web-based Interactive 2D/3D Med-
ical Image Processing and Visualization Software.
Computer Methods and Programs in Biomedicine,
98(2):172–182.
Marion, C. and Jomier, J. (2012). Real-Time Collaborative
Scientific WebGL Visualization with WebSocket. In
17th International Conference on 3D Web Technology,
pages 47–50, Los Angeles, CA, USA.
MMAP (2018). Memory-Mapped
I/O. http://www.kernel.org/doc/man-
pages/online/pages/man2/mmap.2.html.
Moraes, T., Amorim, P., Silva, J., and Pedrini, H. (2018).
3D Lanczos Interpolation for Medical Volumes. In
15th International Symposium on Computer Methods
in Biomechanics and Biomedical Engineering, pages
1–10, Lisbon, Portugal.
Murray, S. (2017). Interactive Data Visualization for the
Web: An Introduction to Designing with. O’Reilly
Media, Inc.
Mwalongo, F., Krone, M., Becher, M., Reina, G., and Ertl,
T. (2015). Remote Visualization of Dynamic Molecu-
lar Data using WebGL. In 20th International Confer-
ence on 3D Web Technology, pages 115–122.
Oliphant, T. E. (2007). Python for Scientific Computing.
Computing in Science & Engineering, 9(3):10–20.
Pandey, A. V., Manivannan, A., Nov, O., Satterthwaite,
M., and Bertini, E. (2014). The Persuasive Power of
Data Visualization. IEEE Transactions on Visualiza-
tion and Computer Graphics, 20(12):2211–2220.
Paul, B. (1997). OpenGL/Mesa Off-Screen Rendering.
In ACM SIGGRAPH Conference, Los Angeles, CA,
USA.
Prince, J. and Links, J. (2014). Medical Imaging Signals
and Systems. Pearson Education.
RedisLab (2018). Redis. https://redis.io/.
Rego, N. and Koes, D. (2015). 3Dmol.js: Molecular Visu-
alization with WebGL. Bioinformatics, 31(8):1322–
1324.
Ronacher, A. (2018). Flask. http://flask.pocoo.org/.
Schroeder, W., Martin, K., Martin, K. W., and Lorensen, B.
(2004). The Visualization Toolkit. Prentice Hall PTR.
Sherif, T., Kassis, N., Rousseau, M.-T., Adalat, R., and
Evans, A. (2015). Brainbrowser: Distributed, Web-
based Neurological Data Visualization. Frontiers in
Neuroinformatic, 8:1–10.
Tanenbaum, A. S. and Van Steen, M. (2007). Distributed
Systems: Principles and Paradigms. Prentice-Hall.
Telea, A. C. (2014). Data Visualization: Principles and
Practice. CRC Press.
VRML (2012). Virtual Reality Modeling Language.
http://www.vrml.org/.
VTK (2018). Visualization Toolkit. http://www.vtk.org/.
GRAPP 2019 - 14th International Conference on Computer Graphics Theory and Applications
352