
Representation  and  Reasoning  in  Medicine  38, 171–
195. https://doi.org/10.1016/j.artmed.2006.03.007 
Bottrighi,  A.,  Giordano,  L.,  Molino,  G.,  Montani,  S., 
Terenziani,  P.,  Torchio,  M.,  2010.  Adopting  model 
checking  techniques  for  clinical  guidelines 
verification.  Artif.  Intell.  Med.  48,  1–19. 
https://doi.org/10.1016/j.artmed.2009.09.003 
Institute  of  Medicine  (US),  1990.  Clinical  practice 
guidelines  directions  for  a  new  program.  National 
Academy Press, Washington, D.C. 
Montani, S., Terenziani, P., Bottrighi, A., 2005. Exploiting 
Decision Theory for Supporting Therapy Selection in 
Computerized  Clinical  Guidelines,  in:  Miksch,  S., 
Hunter,  J.,  Keravnou,  E.T.  (Eds.),  Artificial 
Intelligence  in  Medicine,  10th  Conference  on 
Artificial  Intelligence  in  Medicine,  AIME  2005, 
Aberdeen, UK, July 23-27, 2005, Proceedings, Lecture 
Notes  in  Computer  Science.  Springer,  pp.  136–140. 
https://doi.org/10.1007/11527770_19 
Peleg,  M.,  2013.  Computer-interpretable  clinical 
guidelines:  A  methodological  review.  J.  Biomed. 
Inform.  46,  744–763. 
https://doi.org/10.1016/j.jbi.2013.06.009 
Piovesan, L., Anselma, L., Terenziani, P., 2015. Temporal 
detection  of  guideline  interactions,  in:  HEALTHINF 
2015.  Presented  at  the  International  Conference  on 
Health  Informatics  2015,  Scitepress,  pp.  40–50. 
https://doi.org/10.5220/0005186300400050 
Piovesan, L., Molino, G., Terenziani, P., 2014. Supporting 
Physicians in the Detection of the Interactions between 
Treatments  of  Co-Morbid  Patients,  in:  Healthcare 
Informatics  and  Analytics:  Emerging  Issues  and 
Trends. IGI Global, pp. 165–193. 
Piovesan,  L.,  Terenziani,  P.,  2016.  A  Constraint-Based 
Approach for the Conciliation of Clinical Guidelines, 
in:  Advances  in  Artificial  Intelligence  -  IBERAMIA 
2016,  LNCS.  Presented  at  the  Ibero-American 
Conference  on  Artificial  Intelligence,  Springer 
International  Publishing,  pp.  77–88. 
https://doi.org/10.1007/978-3-319-47955-2_7 
Piovesan,  L.,  Terenziani,  P.,  2015.  A  Mixed-Initiative 
approach to the conciliation of Clinical Guidelines for 
comorbid patients, in: KR4HC 2015, Lecture Notes in 
Artificial  Intelligence.  Springer  International 
Publishing, Pavia, pp. 95–108. 
Piovesan, L., Terenziani, P., Molino, G., 2018. GLARE-
SSCPM:  an  Intelligent  System  to  Support  the 
Treatment  of  Comorbid  Patients.  IEEE  Intell.  Syst. 
https://doi.org/10.1109/MIS.2018.111144734 
Riaño, D., Collado, A., 2013. Model-Based Combination 
of  Treatments  for  the  Management  of  Chronic 
Comorbid  Patients,  in:  Artificial  Intelligence  in 
Medicine.  Springer  Berlin  Heidelberg,  Berlin, 
Heidelberg, pp. 11–16. 
Sánchez-Garzón, I., Fernández-Olivares, J., Onaindía, E., 
Milla, G., Jordán, J., Castejón, P., 2013. A Multi-agent 
Planning Approach for the Generation of Personalized 
Treatment  Plans  of  Comorbid  Patients,  in:  AIME 
2013,  Lecture  Notes  in  Computer  Science.  Springer 
Berlin  Heidelberg,  pp.  23–27. 
https://doi.org/10.1007/978-3-642-38326-7_4 
Sittig,  D.F.,  Wright,  A.,  Osheroff,  J.A.,  Middleton,  B., 
Teich,  J.M.,  Ash,  J.S.,  Campbell,  E.,  Bates,  D.W., 
2008. Grand challenges in clinical decision support. J. 
Biomed.  Inform.  41,  387–392. 
https://doi.org/10.1016/j.jbi.2007.09.003 
Ten  Teije,  A.,  Miksch,  S.,  Lucas,  P.  (Eds.),  2008. 
Computer-based  medical  guidelines  and  protocols:  a 
primer and current trends, Studies in health technology 
and informatics. IOS Press, Amsterdam. 
Terenziani, P., Molino, G., Torchio, M., 2001. A modular 
approach  for  representing  and  executing  clinical 
guidelines.  Artif.  Intell.  Med.  23,  249–276. 
https://doi.org/10.1016/S0933-3657(01)00087-2 
Terenziani,  P.,  Montani,  S.,  Bottrighi,  A.,  Torchio,  M., 
Molino, G., Correndo, G., 2004. A context-adaptable 
approach to clinical guidelines. Stud. Health Technol. 
Inform. 107, 169–173. 
Wilk, S., Michalowski, W., Michalowski, M., Farion, K., 
Hing,  M.M.,  Mohapatra,  S.,  2013.  Mitigation  of 
adverse  interactions  in  pairs  of  clinical  practice 
guidelines  using  constraint  logic  programming.  J. 
Biomed.  Inform.  46,  341–353. 
https://doi.org/10.1016/j.jbi.2013.01.002 
Zamborlini, V., da Silveira, M., Pruski, C., ten Teije, A., 
van Harmelen, F., 2014. Towards a Conceptual Model 
for  Enhancing  Reasoning  About  Clinical  Guidelines, 
in:  Miksch,  S.,  Riaño,  D.,  ten  Teije,  A.  (Eds.), 
Knowledge Representation for Health  Care. Springer 
International Publishing, Cham, pp. 29–44. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Run-time Support to Comorbidities in GLARE-SSCPM
505