ACKNOWLEDGEMENTS
This work has been partially supported by the Min-
isterio de Econom
´
ıa y Competitividad and the Euro-
pean Union (via ERDF funds) through the research
project (TIN2017-84968-R).
REFERENCES
Bene
ˇ
s, B., Stava, O., M
ˇ
ech, R., and Miller, G. (2011).
Guided procedural modeling. In Computer graphics
forum, volume 30, pages 325–334. Wiley Online Li-
brary.
Berger, M., Tagliasacchi, A., Seversky, L. M., Alliez, P.,
Guennebaud, G., Levine, J. A., Sharf, A., and Silva,
C. T. (2017). A survey of surface reconstruction from
point clouds. In Computer Graphics Forum, vol-
ume 36, pages 301–329. Wiley Online Library.
Candiago, S., Remondino, F., De Giglio, M., Dubbini,
M., and Gattelli, M. (2015). Evaluating multispec-
tral images and vegetation indices for precision farm-
ing applications from uav images. Remote Sensing,
7(4):4026–4047.
Deussen, O., Hanrahan, P., Lintermann, B., M
ˇ
ech, R., Pharr,
M., and Prusinkiewicz, P. (1998). Realistic modeling
and rendering of plant ecosystems. In Proceedings of
the 25th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’98, pages
275–286, New York, NY, USA. ACM.
Guo, J., Xu, S., Yan, D.-M., Cheng, Z., Jaeger, M., and
Zhang, X. (2018). Realistic procedural plant model-
ing from multiple view images. IEEE transactions on
visualization and computer graphics.
Hakkenberg, C., Peet, R., Urban, D., and Song, C. (2018).
Modeling plant composition as community continua
in a forest landscape with lidar and hyperspectral re-
mote sensing. Ecological Applications, 28(1):177–
190.
Klodt, M. and Cremers, D. (2014). High-resolution plant
shape measurements from multi-view stereo recon-
struction. In European Conference on Computer Vi-
sion, pages 174–184. Springer.
Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., and
El-Sana, J. (2010). Automatic reconstruction of tree
skeletal structures from point clouds. ACM Trans.
Graph., 29(6):151:1–151:8.
Lou, L., Liu, Y., Han, J., and Doonan, J. H. (2014). Ac-
curate multi-view stereo 3d reconstruction for cost-
effective plant phenotyping. pages 349–356.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International journal of computer
vision, 60(2):91–110.
Moran, M. S., Inoue, Y., and Barnes, E. (1997). Opportuni-
ties and limitations for image-based remote sensing in
precision crop management. Remote sensing of Envi-
ronment, 61(3):319–346.
Omasa, K., Hosoi, F., and Konishi, A. (2006). 3d li-
dar imaging for detecting and understanding plant re-
sponses and canopy structure. Journal of experimental
botany, 58(4):881–898.
Oppenheimer, P. E. (1986). Real time design and anima-
tion of fractal plants and trees. In ACM SiGGRAPH
Computer Graphics, volume 20, pages 55–64. ACM.
Palubicki, W. (2012). Fuzzy Plant Modeling with OpenGL:
Novel Approaches in Simulating Phototropism and
Environmental Conditions. AV Akademikerverlag.
Palubicki, W., Horel, K., Longay, S., Runions, A., Lane,
B., M
ˇ
ech, R., and Prusinkiewicz, P. (2009). Self-
organizing tree models for image synthesis. In ACM
Transactions on Graphics (TOG), volume 28, page 58.
ACM.
Pe
˜
nuelas, J. and Filella, I. (1998). Visible and near-infrared
reflectance techniques for diagnosing plant physiolog-
ical status. Trends in plant science, 3(4):151–156.
Prusinkiewicz, P. (1986). Graphical applications of l-
systems. In Proceedings of graphics interface, vol-
ume 86, pages 247–253.
Prusinkiewicz, P. (2004). Modeling plant growth and devel-
opment. Current Opinion in Plant Biology, 7(1):79 –
83.
Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J., and Kang,
S. B. (2006). Image-based plant modeling. In ACM
Transactions on Graphics (TOG), volume 25, pages
599–604. ACM.
Runions, A., Lane, B., and Prusinkiewicz, P. (2007). Mod-
eling trees with a space colonization algorithm. NPH,
7:63–70.
Sankaran, S., Mishra, A., Ehsani, R., and Davis, C. (2010).
A review of advanced techniques for detecting plant
diseases. Computers and Electronics in Agriculture,
72(1):1–13.
Stava, O., Benes, B., Mech, R., Aliaga, D. G., and Kristof,
P. (2010). Inverse procedural modeling by automatic
generation of l-systems. Comput. Graph. Forum,
29(2):665–674.
Stava, O., Pirk, S., Kratt, J., Chen, B., M
ˇ
ech, R., Deussen,
O., and Benes, B. (2014). Inverse procedural mod-
elling of trees. In Computer Graphics Forum, vol-
ume 33, pages 118–131. Wiley Online Library.
Suh, H. K., Hofstee, J. W., and van Henten, E. J. (2018). Im-
proved vegetation segmentation with ground shadow
removal using an hdr camera. Precision Agriculture,
19(2):218–237.
Thomas, S., Kuska, M. T., Bohnenkamp, D., Brugger,
A., Alisaac, E., Wahabzada, M., Behmann, J., and
Mahlein, A.-K. (2018). Benefits of hyperspectral
imaging for plant disease detection and plant protec-
tion: a technical perspective. Journal of Plant Dis-
eases and Protection, 125(1):5–20.
Xu, H., Gossett, N., and Chen, B. (2007). Knowledge and
heuristic-based modeling of laser-scanned trees. ACM
Trans. Graph., 26(4).
Yi, L., Li, H., Guo, J., Deussen, O., and Zhang, X. (2015).
Light-Guided Tree Modeling of Diverse Biomorphs.
In Stam, J., Mitra, N. J., and Xu, K., editors, Pa-
cific Graphics Short Papers. The Eurographics Asso-
ciation.
GRAPP 2019 - 14th International Conference on Computer Graphics Theory and Applications
366