tal and spatial rule-based modelling with virtual cell.
Biophysical Journal, 113(8):1365–1372.
Boutillier, P., Maasha, M., Li, X., Medina-Abarca, H. F.,
Krivine, J., Feret, J., Cristescu, I., Forbes, A. G., and
Fontana, W. (2018). The kappa platform for rule-
based modeling. Bioinformatics.
Calzone, L., Chabrier-Rivier, N., Fages, F., and Soliman, S.
(2005). Apprentissage de règles de réactions biochim-
iques à partir de propriétés en logique temporelle. In
Guy Perrière, A. G. e. C. G., editor, Actes de JO-
BIM’05, pages 183–192, Lyon.
Cardelli, L. (2004). Brane calculi. In Computational
Methods in Systems Biology, International Confer-
ence, CMSB 2004, volume 3082 of Lecture Notes in
Computer Science, pages 257–278. Springer.
Chen, C.-C. and Crilly, N. (2016). Describing complex de-
sign practices with a cross-domain framework : learn-
ing from synthetic biology and swarm robotics. Res
Eng Design, 27:291–305. 10.1007/s00163-016-0219-
2.
Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet,
N., Meseguer, J., and Quesada, J. (2000). Towards
Maude 2.0. In 3rd International Workshop on Rewrit-
ing Logic and its Applications (WRLA’00), volume 36
of Electronic Notes in Theoretical Computer Science.
Elsevier.
Danos, V. and Laneve, C. (2004). Formal molecular biol-
ogy. Theoretical Computer Sciences, 325(1):69–110.
Dill, D. L., Merrill, K. A., Pamela, G., Talcott, C. L., Lader-
oute, K., and Lincoln, P. (2005). The pathalyzer:
A tool for analysis of signal transduction pathways.
In Proceedings of the First Annual Recomb Satellite
Workshop on Systems Biology, pages 11–22.
Eker, S., Knapp, M., Laderoute, K., Lincoln, P., and Tal-
cott, C. (2002). Pathway Logic: Executable models of
biological networks. In Proceedings of Fourth Inter-
national Workshop on Rewriting Logic and Its Appli-
cations (WRLA).
Faeder, J. R., Blinov, M. L., Goldstein, B., and Hlavacek,
W. S. (2005). Rule-based modeling of biochemical
networks. Complexity, 10(4):22–41.
Faeder, J. R., Blinov, M. L., and Hlavacek, W. S. (2009).
Rule-based modeling of biochemical systems with
bionetgen. Systems Biology, 10(4).
Fages, F., Gay, S., and Soliman, S. (2015). Inferring re-
action systems from ordinary differential equations.
Theoretical Computer Science, 599:64 – 78. Ad-
vances in Computational Methods in Systems Biol-
ogy.
Fages, F. and Soliman, S. (2008). Formal cell biology
in biocham. In Formal Methods for Computational
Systems Biology, 8th International School on Formal
Methods for the Design of Computer, Communication,
and Software Systems, SFM 2008, Bertinoro, Italy,
Advanced Lectures, volume 5016 of Lecture Notes in
Computer Science, pages 54–80. Springer.
Fages, F., Soliman, S., and Chabrier-Rivier, N. (2004).
Modelling and querying interaction networks in the
biochemical abstract machine biocham.
Giannakis, K. and Andronikos, T. (2017). Membrane au-
tomata for modeling biomolecular processes. Natural
Computing, 16(1):151–163.
Harris, L. A., Hogg, J. S., and Faeder, J. R. (2009). Com-
portmental rule-based modeling of biochemical sys-
tems. In Proceedings of the 2009 Winter Simulation
Conference. M. D. Rossetti, R. R. Hill, B. Johansson,
A. Dunkin, and R. G; Ingalls, eds.
Hlavacek, W. S., Faeder, J. R., Blinov, M. L., Posner, R. G.,
Hucka, M., and Fontana, W. (2006). Rules for mod-
eling signal-transduction systems. Sciences STKE,
344(6).
Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler,
L., Chelliah, V., Li, L., He, E., Henry, A., Stefan, M.,
Snoep, J., Hucka, M., Novère, N. L., and Laibe, C.
(2010). Biomodels database: An enhanced, curated
and annotated resource for published quantitative ki-
netic models. BMC Syst Biol, 4(92).
Ma’ayan, A. (2017). complex systems biology. J. R. Soc
Interface, 14(20170391).
Machado, D., Costa, R. S., Rocha, M., Ferreira, E. C.,
Tidor, B., and Rocha, I. (2011). Modeling formalisms
in systems biology. AMB Express a SpringerOpen
Journal.
Pedersen, M., P.hillips, A., and Plotkin, G. D. (2015).
A high-level language for rule-based modelling.
PLoSONE10(6):e0114296.doi:10.1371/journal.
pone.0114296.
Regev, A., Panina, E. M., Silverman, W., Cardelli, L., and
Shapiro, E. Y. (2004). Bioambients: an abstraction
for biological compartments. Theor. Comput. Sci.,
325(1):141–167.
Riesco, A., Santos-Buitrago, B., Rivas, J. D. L., Knapp, M.,
Santos-Garcia, G., and Talcott, C. (2017). Epidermal
growth factor signaling towards proliferation: Model-
ing and logic inference using forward and backward
search. BioMed Research International, 2017:11.
https://doi.org/10.1155/2017/1809513.
Suderman, R. and Hlavacek, W. S. (2017). Truml: A
translator for rule-based modeling languages. In Pro-
ceedings of the 8th ACM International Conference
on Bioinformatics, Computational Biology,and Health
Informatics, ACM-BCB ’17, pages 372–377, New
York, NY, USA. ACM.
Talcott, C. (2016). The pathway logic formal modeling sys-
tem: Diverse views of a formal representation of sig-
nal transduction. In Workshop on Formal Methods in
Bioinformatics and Biomedicine.
Talcott, C. and Dill, D. L. (2005). The pathway logic assis-
tant. In Proceedings of the Workshop Computational
Methods in Systems Biology (CMSB, G. Plotkin, Ed.,
2005, pages 228–239.
Vidil, F., Damiand, G., Dexet-Guiard, M., Guiard, N.,
Ledoux, F., Fousse, A., Fradin, D., Liang, Y., Men-
eveaux, D., and Bertrand, Y. (2002). Moka: 3d topo-
logical modeler.
A Proposal for a Language Combining Biochemical Rules and Topological Structure for Systems Biology
317