Dhandra, B. V., Hegadi, R., Hangarge, M., and Malemath,
V. S. (2006). Analysis of abnormality in endoscopic
images using combined hsi color space and watershed
segmentation. In Pattern Recognition, 2006. ICPR
2006. 18th International Conference on, volume 4,
pages 695–698. IEEE.
Eskandari, H., Talebpour, A., Alizadeh, M., and Soltanian-
Zadeh, H. (2012). Polyp detection in wireless cap-
sule endoscopy images by using region-based active
contour model. In Biomedical Engineering (ICBME),
2012 19th Iranian Conference of, pages 305–308.
IEEE.
Ganz, M., Yang, X., and Slabaugh, G. (2012). Automatic
segmentation of polyps in colonoscopic narrow-band
imaging data. IEEE Transactions on Biomedical En-
gineering, 59(8):2144–2151.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Hwang, S. and Celebi, M. E. (2010). Polyp detection
in wireless capsule endoscopy videos based on im-
age segmentation and geometric feature. In Acoustics
Speech and Signal Processing (ICASSP), 2010 IEEE
International Conference on, pages 678–681. IEEE.
Hwang, S., Oh, J., Tavanapong, W., Wong, J., and
De Groen, P. C. (2007). Polyp detection in
colonoscopy video using elliptical shape feature. In
Image Processing, 2007. ICIP 2007. IEEE Interna-
tional Conference on, volume 2, pages II–465. IEEE.
Iakovidis, D. K. and Koulaouzidis, A. (2014). Automatic le-
sion detection in wireless capsule endoscopy—a sim-
ple solution for a complex problem. In Image Pro-
cessing (ICIP), 2014 IEEE International Conference
on, pages 2236–2240. IEEE.
Iakovidis, D. K., Maroulis, D. E., Karkanis, S. A., and
Brokos, A. (2005). A comparative study of texture
features for the discrimination of gastric polyps in en-
doscopic video. In Computer-Based Medical Systems,
2005. Proceedings. 18th IEEE Symposium on, pages
575–580. IEEE.
Karargyris, A. and Bourbakis, N. (2009). Identification of
polyps in wireless capsule endoscopy videos using log
gabor filters. In Life Science Systems and Applications
Workshop, 2009. LiSSA 2009. IEEE/NIH, pages 143–
147. IEEE.
Karkanis, S. A., Iakovidis, D. K., Maroulis, D. E., Karras,
D. A., and Tzivras, M. (2003). Computer-aided tumor
detection in endoscopic video using color wavelet fea-
tures. IEEE transactions on information technology in
biomedicine, 7(3):141–152.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Leufkens, A., van Oijen, M., Vleggaar, F., and Siersema, P.
(2012). Factors influencing the miss rate of polyps
in a back-to-back colonoscopy study. Endoscopy,
44(05):470–475.
Magoulas, G. D., Plagianakos, V. P., and Vrahatis, M. N.
(2004). Neural network-based colonoscopic diagno-
sis using on-line learning and differential evolution.
Applied Soft Computing, 4(4):369–379.
Mamonov, A. V., Figueiredo, I. N., Figueiredo, P. N., and
Tsai, Y.-H. R. (2014). Automated polyp detection in
colon capsule endoscopy. IEEE transactions on med-
ical imaging, 33(7):1488–1502.
Maroulis, D. E., Iakovidis, D. K., Karkanis, S. A., and Kar-
ras, D. A. (2003). Cold: a versatile detection sys-
tem for colorectal lesions in endoscopy video-frames.
Computer Methods and Programs in Biomedicine,
70(2):151–166.
Park, S. Y., Sargent, D., Spofford, I., Vosburgh, K. G.,
Yousif, A., et al. (2012). A colon video analysis
framework for polyp detection. IEEE Transactions on
Biomedical Engineering, 59(5):1408–1418.
Rabeneck, L., El-Serag, H. B., Davila, J. A., and Sandler,
R. S. (2003). Ooutcomes of colorectal cancer in the
united states: No change in survival (1986–1997). The
American journal of gastroenterology, 98(2):471.
Ratheesh, A., Soman, P., Nair, M. R., Devika, R., and
Aneesh, R. (2016). Advanced algorithm for polyp de-
tection using depth segmentation in colon endoscopy.
In Communication Systems and Networks (ComNet),
International Conference on, pages 179–183. IEEE.
S
´
anchez, F. J., Bernal, J., S
´
anchez-Montes, C., de Miguel,
C. R., and Fern
´
andez-Esparrach, G. (2017). Bright
spot regions segmentation and classification for spec-
ular highlights detection in colonoscopy videos. Ma-
chine Vision and Applications, 28(8):917–936.
Siegel, R. L., Miller, K. D., Fedewa, S. A., Ahnen, D. J.,
Meester, R. G., Barzi, A., and Jemal, A. (2017). Col-
orectal cancer statistics, 2017. CA: a cancer journal
for clinicians, 67(3):177–193.
Silva, J., Histace, A., Romain, O., Dray, X., and Granado,
B. (2014). Toward embedded detection of polyps in
wce images for early diagnosis of colorectal cancer.
International Journal of Computer Assisted Radiology
and Surgery, 9(2):283–293.
Tajbakhsh, N., Gurudu, S. R., and Liang, J. (2014). Au-
tomatic polyp detection using global geometric con-
straints and local intensity variation patterns. In In-
ternational Conference on Medical Image Computing
and Computer-Assisted Intervention, pages 179–187.
Springer.
Tajbakhsh, N., Gurudu, S. R., and Liang, J. (2015). Au-
tomatic polyp detection in colonoscopy videos using
an ensemble of convolutional neural networks. In
Biomedical Imaging (ISBI), 2015 IEEE 12th Interna-
tional Symposium on, pages 79–83. IEEE.
Tajbakhsh, N., Gurudu, S. R., and Liang, J. (2016). Au-
tomated polyp detection in colonoscopy videos using
shape and context information. IEEE transactions on
medical imaging, 35(2):630–644.
Tarik, G., Khalid, A., Jamal, K., and Benajah, D. A. (2016).
Polyps’s region of interest detection in colonoscopy
images by using clustering segmentation and region
growing. In Information Science and Technology
(CiSt), 2016 4th IEEE International Colloquium on,
pages 455–459. IEEE.
GIANA 2019 - Special Session on GastroIntestinal Image Analysis
624