moscopy images. IBM Journal of Research and De-
velopment, 61(4):5–1.
Dunn, J. C. (1973). A fuzzy relative of the isodata process
and its use in detecting compact well-separated clus-
ters.
Engasser, H. C. and Warshaw, E. M. (2010). Dermato-
scopy use by us dermatologists: a cross-sectional sur-
vey. Journal of the American Academy of Dermato-
logy, 63(3):412–419.
Facts, C. and Figures (2018). American cancer so-
ciety. https://www.cancer.org/content/dam/cancer-
org/research/cancer-facts-and-statistics/annual-
cancer-facts-and-figures/2018/cancer-facts-and-
figures-2018.pdf.
Ferlay, J., Shin, H.- R., Bray, F., Forman, D., Mathers, C.,
and Parkin, D. M. (2010). Estimates of worldwide
burden of cancer in 2008: Globocan 2008. Internati-
onal journal of cancer, 127(12):2893–2917.
Haralick, R. M., Shanmugam, K., et al. (1973). Textural
features for image classification. IEE E Transactions
on systems, man, and cybernetics, (6):610–621.
Henning, J. S., Dusza, S. W., Wang, S. Q., Marghoob, A. A.,
Rabinovitz, H. S., Polsky, D., and Kopf, A. W. (2007).
The cash (color, architecture, symmetry, and homoge-
neity) algorithm for dermoscopy. Journal of the Ame-
rican Academy of Dermatology, 56(1):45–52.
Kaliyadan, F. , Ashique, K. T., Jagadeesan, S., et al. (2018).
A survey on the pattern of dermoscopy use among der-
matologists in india. Indian Journal of Dermatology,
Venereology, and Leprology, 84(1):120.
Kuo, Y.-W., Chang, Y.-J., Wang, S .-H., Lu, P.-H., Su, Y.-L. ,
Chu, T. W., and Chu, G.-Y. (2015). Survey of der-
moscopy use by taiwanese dermatologists. Dermato-
logica Sinica, 33(4):215–219.
Lopez, A. R., Giro-i Nieto, X., Burdick, J., and Marques, O.
(2017). Skin lesion classification from dermoscopic
images using deep learning techniques. In Biomedical
Engineering (BioMed), 2017 13th I ASTED Internati-
onal Conference on, pages 49–54. IEEE.
Marchetti, M. A., Codella, N. C., Dusza, S. W., Gutman,
D. A., H elba, B., Kalloo, A., Mishra, N., Carrera, C.,
Celebi, M. E., DeFazio, J. L., et al. (2018). Results
of the 2016 international skin i maging collaboration
international symposium on biomedical imaging chal-
lenge: Comparison of the accuracy of computer al-
gorithms to dermatologists for the diagnosis of mela-
noma from dermoscopic images. Journal of the Ame-
rican Academy of Dermatology, 78(2):270–277.
Menzies, S. W., Ingvar, C., Crotty, K. A., and McCarthy,
W. H. (1996). Frequency and morphologic charac-
teristics of invasive melanomas lacking specific sur-
face microscopic features. Archives of Dermatology,
132(10):1178–1182.
Peizhuang, W. (1983). Pattern recognition with fuzzy ob-
jective function algorithms (james c. bezdek). SIAM
Review, 25(3):442.
Piccolo, D., Ferrari, A., Peris, K., Daidone, R., Ruggeri,
B., and Chimenti, S. (2002). Dermoscopic diagnosis
by a trained clinician vs. a clinician with minimal der-
moscopy training vs. computer-aided diagnosis of 341
pigmented skin lesions: a comparative study. British
Journal of Dermatology, 147(3):481–486.
Quang, N. H. et al. (2017). Automatic skin lesion analysis
towards melanoma detection. In Intelligent and Evo-
lutionary Systems (IES), 2017 21st A sia Pacific Sym-
posium on, pages 106–111. IE EE.
Ries, L. A., Harkins, D., Krapcho, M., Mariotto, A., Mill er,
B., Feuer, E. J., Clegg, L. X., Eisner, M., Horner, M.-
J., Howlader, N., et al. (2006). Seer cancer statistics
review, 1975-2003.
Sheha, M., Mabrouk, M., and Sharawy, A. (2012). Auto-
matic detection of melanoma skin cancer using texture
analysis. International Journal of Computer Applica-
tions, 42(20):22–26.
Smith, A. R. ( 1978). Color gamut transform pairs. ACM
Siggraph C omputer Graphics, 12(3):12–19.
Sordo, M. (2002). Introduction to neural networks in he-
althcare. Open Clinical: Knowledge Management for
Medical Care.
Stolz, W. (1994). Abcd rule of dermatoscopy: a new practi-
cal method for early recognition of malignant mela-
noma. Eur. J. Dermatol., 4:521–527.
Yu, L., Chen, H., Dou, Q., Qin, J., and Heng, P.-A.
(2017). Automated melanoma recognition in der-
moscopy images via very deep r esidual networks.
IEEE transactions on medical imaging, 36(4):994–
1004.