ACKNOWLEDGEMENTS
The authors would like to acknowledge the organisers
of the Gastrointestinal Image ANAlysis – (GIANA)
challenges for providing video colonoscopy polyp
images.
REFERENCES
Akbari, M., Mohrekesh, M., Nasr-Esfahani, E.,
Soroushmehr, S. M., Karimi, N., Samavi, S., &
Najarian, K. (2018). Polyp Segmentation in
Colonoscopy Images Using Fully Convolutional
Network. arXiv preprint arXiv:1802.00368.
Alexandre, L. A., Nobre, N., and Casteleiro, J. (2008).
Color and position versus texture features for
endoscopic polyp detection. In BioMedical
Engineering and Informatics, 2008. BMEI 2008.
International Conference on (Vol. 2, pp. 38-42). IEEE.
Bernal, J., Sánchez, F. J., Fernández-Esparrach, G., Gil, D.,
Rodríguez, C., & Vilariño, F. (2015). WM-DOVA
maps for accurate polyp highlighting in colonoscopy:
Validation vs. saliency maps from
physicians. Computerized Medical Imaging and
Graphics, 43, 99-111.
Bernal, J., Sánchez, J., & Vilarino, F. (2012). Towards
automatic polyp detection with a polyp appearance
model. Pattern Recognition, 45(9), 3166-3182.
Bernal, J., Sánchez, J., & Vilarino, F. (2013). Impact of
image preprocessing methods on polyp localization in
colonoscopy frames. In Engineering in Medicine and
Biology Society (EMBC), 2013 35th Annual
International Conference of the IEEE (pp. 7350-7354).
IEEE.
Bernal, J., Tajkbaksh, N., Sánchez, F. J., Matuszewski, B.
J., Chen, H., Yu, L., ... & Pogorelov, K. (2017).
Comparative validation of polyp detection methods in
video colonoscopy: results from the MICCAI 2015
Endoscopic Vision Challenge. IEEE transactions on
medical imaging, 36(6), 1231-1249.
Breier, M., Gross, S., and Behrens, A. (2011a). Chan-Vese-
segmentation of polyps in colonoscopic image data.
In Proceedings of the 15th International Student
Conference on Electrical Engineering POSTER (Vol.
2011).
Breier, M., Gross, S., Behrens, A., Stehle, T., and Aach, T.
(2011b). Active contours for localizing polyps in
colonoscopic nbi image data. In Medical Imaging
2011: Computer-Aided Diagnosis (Vol. 7963, p.
79632M). International Society for Optics and
Photonics.
Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., and
Yuille, A. L. (2018). Deeplab: Semantic image
segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE
transactions on pattern analysis and machine
intelligence, 40(4), 834-848.
Glorot, X., and Bengio, Y. (2010). Understanding the
difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international
conference on artificial intelligence and statistics (pp.
249-256).
Gross, S., Kennel, M., Stehle, T., Wulff, J., Tischendorf, J.,
Trautwein, C., and Aach, T. (2009). Polyp
segmentation in NBI colonoscopy. In Bildverarbeitung
für die Medizin 2009 (pp. 252-256). Springer, Berlin,
Heidelberg.
Hernández-García, A., and König, P. (2018). Do deep nets
really need weight decay and dropout?.
arXiv:1802.07042v3
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern
recognition (pp. 770-778).
Hu, J., Shen, L., and Sun, G. (2017). Squeeze-and-
excitation networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition (pp. 7132-7141).
Hwang, S., Oh, J., Tavanapong, W., Wong, J., and De
Groen, P. C. (2007). Polyp detection in colonoscopy
video using elliptical shape feature. In Image
Processing, 2007. ICIP 2007. IEEE International
Conference on (Vol. 2, pp. II-465). IEEE.
Iakovidis, D. K., Maroulis, D. E., Karkanis, S. A., and
Brokos, A. (2005). A comparative study of texture
features for the discrimination of gastric polyps in
endoscopic video. In Computer-Based Medical
Systems, 2005. Proceedings. 18th IEEE Symposium
on (pp. 575-580). IEEE.
Karkanis, S. A., Iakovidis, D. K., Maroulis, D. E., Karras,
D. A., and Tzivras, M. (2003). Computer-aided tumor
detection in endoscopic video using color wavelet
features. IEEE transactions on information technology
in biomedicine, 7(3), 141-152.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neural
networks. In Advances in neural information
processing systems (pp. 1097-1105).
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278-
2324.
Li, Q., Yang, G., Chen, Z., Huang, B., Chen, L., Xu, D., ...
and Wang, T. (2017). Colorectal polyp segmentation
using a fully convolutional neural network. In Image
and Signal Processing, BioMedical Engineering and
Informatics (CISP-BMEI), 2017 10th International
Congress on (pp. 1-5). IEEE.
Long, J., Shelhamer, E., and Darrell, T. (2015). Fully
convolutional networks for semantic segmentation.
In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 3431-3440).
Park, S., Lee, M., and Kwak, N. (2015). Polyp detection in
colonoscopy videos using deeply-learned hierarchical
features. Seoul National University.
GIANA 2019 - Special Session on GastroIntestinal Image Analysis
640