brain scans.’ Computer Methods in Biomechanics and
Biomedical Engineering: Imaging and Visualization, 6
(4), 362-370.
Bouix, S., Martin-Fernandez, M., Ungar, L., Nakamura, M.,
Koo, M.S., McCarley, W.R., Shenton, M., 2007. ‘On
Evaluating Brain Tissue Classifiers without a Ground
Truth.’ NeuroImage, 36, 1207-1224.
Charron, O., Lallement, A., Jarnet, D., Noblet, V., Clavier,
J.B., Meyer, P., 2018. ‘Automatic detection and
segmentation of brain metastases on multimodal MR
images with a deep convolutional neural network.’
Computers in Biology and Medicine.
Dice, L.R., 1945. ‘Measures of the amount of ecologic
association between species.’ Ecology, 26(3), 297-302.
Gonzalez, R., Woods, R., 2018. Digital Image Processing,
Pearson-Prentice Hall, 519-566.
Gordillo, N., Montseny, E, Sobrevilla, P., 2013, ‘State of
the art survey on MRI brain tumor segmentation.’ Magn
Reson Imaging, 31(8), 1426-38.
Greenberg, H., Chandler, W., Sandler, H., 1999. Brain
Tumors, Oxford University Press, Oxford.
Joe, B., Fukui, M., Meltzer, C., Huang, S.Q., Day, R.,
Greer, P., Bozik, M., 1999. ‘Brain Tumor Volume
Measurement: Comparison of Manual and
Semiautomated Methods1.’ Radiology, 212(3), 811-6.
Kaus, M., Simon, P., Warfield, K., Nabavi, A., Peter, M.,
Black, M., Jolesz, F., Kikinis, R., 2001. ‘Automated
segmentation of MRI of brain tumors.’ Radiology, 218,
586-591.
Liu, Y., Stojadinovic, S., Hrycushko, B., Wardak, Z., Lu,
W., Yan, Y., Jiang, S., Timmerman, R., Abdulrahman,
R., Nedzi, L., Gu, X., 2016. ‘Automatic metastatic brain
tumor segmentation for stereotactic radiosurgery
applications.’ Physics in medicine and biology, 61,
8440-8461.
Olson, D.D., David, L., 2008. Advanced Data Mining
Techniques, 1st Edition, Springer.
Pedoia, V., Balbi, S., Binaghi, E., 2015. ‘Fully Automatic
Brain Tumor Segmentation by using Competitive EM
and Graph Cut.’ In: International Conference on Image
Analysis and Processing, Genova, Italy.
Sharp, G., Fritscher, K., Pekar, V., Peroni, M., Shusharina,
N., Veeraraghavan, H., Yang, J., 2014. ‘Vision 20/20:
Perspectives on automated image segmentation for
radiotherapy.’ Medical physics, 41(5), 050902.
Schoelkopf, B., Smola, A., 2002. Learning with kernels:
support vector machines, regularization, optimization,
and beyond, MIT Press.
Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De
Moor, B., Vandewalle, J., 2002. Least Squares Support
Vector Machines. World Scientific Publishing Co.,
Singapore.
Tuceryan M., Jain A., 1998. Texture analysis Inc. River
Edge, NJ: World ScientificPublishing.
Vapnik, V.N., 1995. The Nature of Statistical Learning
Theory, Springer-Verlag, New York.
Withey, D.J., Koles, Z.J., 2008. ‘A review of medical image
segmentation: Methods and available software.’
International Journal of Bioelectromagnetism, 10, 125-
14.
Semi-automatic Segmentation of MRI Brain Metastases Combining Support Vector Machine and Morphological Operators
463