new algorithm and practically verified that it outper-
forms the old algorithm. As the speed gain is due to
a number of useful structures that optimize the under-
lying actions of the new algorithm, we plan to inves-
tigate the possibility of utilizing additional constructs
that might enhance further the admissibility-deciding
procedures. In particular, referring to line 6 in the new
algorithm, we currently select an argument by search-
ing in the whole set of arguments (i.e. A). An open
issue is finding a cost-effective mechanism to restrict
the search to a subset of candidate arguments.
ACKNOWLEDGMENT
This work is supported by the scientific research dean-
ship of the German Jordanian University.
REFERENCES
Alfano, G., Greco, S., and Parisi, F. (2017). Efficient com-
putation of extensions for dynamic abstract argumen-
tation frameworks: An incremental approach. In Pro-
ceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI 2017, Mel-
bourne, Australia, August 19-25, 2017, pages 49–55.
Amgoud, L. and Cayrol, C. (2002). Inferring from inconsis-
tency in preference-based argumentation frameworks.
Journal of Automated Reasoning, 29(2):125–169.
Amgoud, L. and Vesic, S. (2010). Handling inconsistency
with preference-based argumentation. In Deshpande,
A. and Hunter, A., editors, Scalable Uncertainty Man-
agement, pages 56–69, Berlin, Heidelberg. Springer
Berlin Heidelberg.
Atkinson, K., Baroni, P., Giacomin, M., Hunter, A.,
Prakken, H., Reed, C., Simari, G. R., Thimm, M., and
Villata, S. (2017). Towards artificial argumentation.
AI Magazine, 38(3):25–36.
Baroni, P., Caminada, M., and Giacomin, M. (2011). An
introduction to argumentation semantics. Knowledge
Eng. Review, 26(4):365–410.
Bench-Capon, T. J. M., Atkinson, K., and Wyner,
A. Z. (2015). Using argumentation to structure e-
participation in policy making. T. Large-Scale Data-
and Knowledge-Centered Systems, 18:1–29.
Caminada, M. W. A. and Gabbay, D. M. (2009). A logi-
cal account of formal argumentation. Studia Logica,
93(2-3):109–145.
Cayrol, C., Doutre, S., and Mengin, J. (2003). On decision
problems related to the preferred semantics for argu-
mentation frameworks. J. Log. Comput., 13(3):377–
403.
Charwat, G., Dvor
´
ak, W., Gaggl, S. A., Wallner, J. P., and
Woltran, S. (2015). Methods for solving reasoning
problems in abstract argumentation - A survey. Artif.
Intell., 220:28–63.
Croitoru, M. and Vesic, S. (2013). What can argumentation
do for inconsistent ontology query answering? In Liu,
W., Subrahmanian, V. S., and Wijsen, J., editors, Scal-
able Uncertainty Management, pages 15–29, Berlin,
Heidelberg. Springer Berlin Heidelberg.
Doutre, S. and Mailly, J. (2018). Constraints and changes:
A survey of abstract argumentation dynamics. Argu-
ment & Computation, 9(3):223–248.
Doutre, S. and Mengin, J. (2001). Preferred extensions
of argumentation frameworks: Query answering and
computation. In Automated Reasoning, First Inter-
national Joint Conference, IJCAR 2001, Siena, Italy,
June 18-23, 2001, Proceedings, pages 272–288.
Dung, P. M. (1995). On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games. Artif. Intell.,
77(2):321–358.
Dunne, P. E. (2007). Computational properties of argument
systems satisfying graph-theoretic constraints. Artif.
Intell., 171(10-15):701–729.
Dvor
´
ak, W. and Dunne, P. E. (2017). Computational prob-
lems in formal argumentation and their complexity.
FLAP, 4(8).
Dvo
ˇ
r
´
ak, W., Pichler, R., and Woltran, S. (2012). Towards
fixed-parameter tractable algorithms for abstract argu-
mentation. Artif. Intell., 186:1–37.
Geilen, N. and Thimm, M. (2017). Heureka: A general
heuristic backtracking solver for abstract argumenta-
tion. In second international competition on compu-
tational argumentation models.
Gordon, T. F. (1993). The pleadings game: Formalizing
procedural justice. In Proceedings of the 4th Interna-
tional Conference on Artificial Intelligence and Law,
ICAIL ’93, pages 10–19, New York, NY, USA. ACM.
Hecham, A., Arioua, A., Stapleton, G., and Croitoru, M.
(2017). An empirical evaluation of argumentation in
explaining inconsistency-tolerant query answering. In
Proceedings of the 30th International Workshop on
Description Logics, Montpellier, France, July 18-21,
2017.
Heras, S., Atkinson, K., Botti, V. J., Grasso, F., Juli
´
an, V.,
and McBurney, P. (2013). Research opportunities for
argumentation in social networks. Artif. Intell. Rev.,
39(1):39–62.
Hunter, A. and Williams, M. (2012). Aggregating evidence
about the positive and negative effects of treatments.
Artificial Intelligence in Medicine, 56(3):173–190.
Jakobovits, H. and Vermeir, D. (1999). Dialectic semantics
for argumentation frameworks. In Proceedings of the
7th International Conference on Artificial Intelligence
and Law, ICAIL ’99, pages 53–62, New York, NY,
USA. ACM.
Liao, B. S., Jin, L., and Koons, R. C. (2011). Dynamics
of argumentation systems: A division-based method.
Artif. Intell., 175(11):1790–1814.
Martinez, M. V. and Hunter, A. (2009). Incorporating clas-
sical logic argumentation into policy-based inconsis-
tency management in relational databases. In The
Uses of Computational Argumentation, Papers from
KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development
74