Anomaly detection: A survey. ACM computing sur-
veys (CSUR), 41(3):15.
Cho, K., Van Merri
¨
enboer, B., Bahdanau, D., and Bengio,
Y. (2014). On the properties of neural machine trans-
lation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259.
Dabhi, V. K. and Chaudhary, S. (2015). Empirical modeling
using genetic programming: a survey of issues and
approaches. Natural Computing, 14(2):303–330.
Di Natale, M. (2000). Scheduling the can bus with earliest
deadline techniques. In Proceedings 21st IEEE Real-
Time Systems Symposium, pages 259–268. IEEE.
Hangal, S. and Lam, M. S. (2002). Tracking down soft-
ware bugs using automatic anomaly detection. In Soft-
ware Engineering, 2002. ICSE 2002. Proceedings of
the 24rd International Conference on, pages 291–301.
IEEE.
Hegde, R., Mishra, G., and Gurumurthy, K. (2011). An
insight into the hardware and software complexity
of ecus in vehicles. In International Conference on
Advances in Computing and Information Technology,
pages 99–106. Springer.
Hsu, K.-l., Gupta, H. V., and Sorooshian, S. (1995). Arti-
ficial neural network modeling of the rainfall-runoff
process. Water resources research, 31(10):2517–
2530.
Koza, J. R. and Rice, J. P. (1991). Genetic generation of
both the weights and architecture for a neural network.
In Neural Networks, 1991., IJCNN-91-Seattle Inter-
national Joint Conference on, volume 2, pages 397–
404. IEEE.
Langdon, W. B. and Harman, M. (2015). Optimizing exist-
ing software with genetic programming. IEEE Trans-
actions on Evolutionary Computation, 19(1):118–
135.
Lu, H., Li, Y., Mu, S., Wang, D., Kim, H., and Serikawa, S.
(2018). Motor anomaly detection for unmanned aerial
vehicles using reinforcement learning. IEEE internet
of things journal, 5(4):2315–2322.
Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agar-
wal, P., and Shroff, G. (2016). Lstm-based encoder-
decoder for multi-sensor anomaly detection. arXiv
preprint arXiv:1607.00148.
Mehr, A. D., Kahya, E., and Olyaie, E. (2013). Streamflow
prediction using linear genetic programming in com-
parison with a neuro-wavelet technique. Journal of
Hydrology, 505:240–249.
Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink,
D., Francon, O., Raju, B., Shahrzad, H., Navruzyan,
A., Duffy, N., et al. (2019). Evolving deep neural net-
works. In Artificial Intelligence in the Age of Neural
Networks and Brain Computing, pages 293–312. El-
sevier.
Mikolov, T., Karafi
´
at, M., Burget, L.,
ˇ
Cernock
`
y, J., and
Khudanpur, S. (2010). Recurrent neural network
based language model. In Eleventh Annual Confer-
ence of the International Speech Communication As-
sociation.
Nordin, P. and Banzhaf, W. (1995). A genetic programming
system learning obstacle avoiding behavior and con-
trolling a miniature robot in real time. Univ., Systems
Analysis Research Group.
Olimex, L. (September, 2018). STM32-E407 development
board USER’S MANUAL. Olimex LTD.
Pachauri, G. and Sharma, S. (2015). Anomaly detec-
tion in medical wireless sensor networks using ma-
chine learning algorithms. Procedia Computer Sci-
ence, 70:325–333.
Rawal, A. and Miikkulainen, R. (2018). From nodes to
networks: Evolving recurrent neural networks. arXiv
preprint arXiv:1803.04439.
Sabokrou, M., Fayyaz, M., Fathy, M., and Klette, R. (2017).
Deep-cascade: Cascading 3d deep neural networks for
fast anomaly detection and localization in crowded
scenes. IEEE Transactions on Image Processing,
26(4):1992–2004.
Schaffer, J. D., Whitley, D., and Eshelman, L. J. (1992).
Combinations of genetic algorithms and neural net-
works: A survey of the state of the art. In Com-
binations of Genetic Algorithms and Neural Net-
works, 1992., COGANN-92. International Workshop
on, pages 1–37. IEEE.
Shao, L., Liu, L., and Li, X. (2014). Feature learning for im-
age classification via multiobjective genetic program-
ming. IEEE Transactions on Neural Networks and
Learning Systems, 25(7):1359–1371.
Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley,
K. O., and Clune, J. (2017). Deep neuroevolution: ge-
netic algorithms are a competitive alternative for train-
ing deep neural networks for reinforcement learning.
arXiv preprint arXiv:1712.06567.
Taylor, A., Japkowicz, N., and Leblanc, S. (2015).
Frequency-based anomaly detection for the automo-
tive can bus. In WCICSS, pages 45–49.
Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., and Lin, W.-Y. (2009). In-
trusion detection by machine learning: A review. Ex-
pert Systems with Applications, 36(10):11994–12000.
Tsai, J.-T., Chou, J.-H., and Liu, T.-K. (2006). Tuning the
structure and parameters of a neural network by using
hybrid taguchi-genetic algorithm. IEEE Transactions
on Neural Networks, 17(1):69–80.
Xu, D., Ricci, E., Yan, Y., Song, J., and Sebe, N. (2015).
Learning deep representations of appearance and mo-
tion for anomalous event detection. arXiv preprint
arXiv:1510.01553.
Zhang, L. and Suganthan, P. N. (2016). A survey of ran-
domized algorithms for training neural networks. In-
formation Sciences, 364:146–155.
Online Encoder-decoder Anomaly Detection using Encoder-decoder Architecture with Novel Self-configuring Neural Networks Pure
Linear Genetic Programming for Embedded Systems
171