REFERENCES
Ayala, I., Amor, M., and Fuentes, L. (2013). Self-
configuring agents for ambient assisted living ap-
plications. Personal and ubiquitous computing,
17(6):1159–1169.
Azimi, I., Rahmani, A. M., Liljeberg, P., and Tenhunen, H.
(2017). Internet of things for remote elderly monitor-
ing: a study from user-centered perspective. Journal
of Ambient Intelligence and Humanized Computing,
8(2):273–289.
Bastinos, A.
ˇ
S. and Krisper, M. (2013). Multi-criteria de-
cision making in ontologies. Information Sciences,
222:593–610.
Bikakis, A. and Antoniou, G. (2010). Rule-based contextual
reasoning in ambient intelligence. In International
Workshop on Rules and Rule Markup Languages for
the Semantic Web, pages 74–88. Springer.
Bohanec, M.,
ˇ
Znidar
ˇ
si
ˇ
c, M., Rajkovi
ˇ
c, V., Bratko, I., and
Zupan, B. (2013). DEX methodology: three decades
of qualitative multi-attribute modeling. Informatica,
37(1).
Bouznad, S., Chibani, A., Amirat, Y., Lyazid, S., Prestes,
E., Sebbak, F., and Fiorini, S. (2017). Context-aware
monitoring agents for ambient assisted living appli-
cations. In European Conference on Ambient Intelli-
gence, pages 225–240. Springer.
Brahimi, L., Bellatreche, L., and Ouhammou, Y. (2017).
Coupling multi-criteria decision making and ontolo-
gies for recommending dbms. In 22nd International
Conference on Management of Data, COMAD, pages
08–10.
Chen, L., Nugent, C. D., and Wang, H. (2012). A
knowledge-driven approach to activity recognition in
smart homes. IEEE Transactions on Knowledge and
Data Engineering, 24(6):961–974.
Fides-Valero,
´
A., Freddi, M., Furfari, F., and Tazari, M.-
R. (2008). The persona framework for supporting
context-awareness in open distributed systems. In
European Conference on Ambient Intelligence, pages
91–108. Springer.
Greco, S., Figueira, J., and Ehrgott, M. (2016). Multiple
criteria decision analysis. Springer.
Herv
´
as, R., Bravo, J., Fontecha, J., and Villarreal, V. (2013).
Achieving adaptive augmented reality through onto-
logical context-awareness applied to aal scenarios.
Kara, M., Lamouchi, O., and Ramdane-Cherif, A. (2017).
A quality model for the evaluation aal systems. Proce-
dia Computer Science, 113:392 – 399. The 8th Inter-
national Conference on Emerging Ubiquitous Systems
and Pervasive Networks (EUSPN 2017) / The 7th In-
ternational Conference on Current and Future Trends
of Information and Communication Technologies in
Healthcare (ICTH-2017) / Affiliated Workshops.
Li, R., Lu, B., and McDonald-Maier, K. D. (2015). Cogni-
tive assisted living ambient system: a survey. Digital
Communications and Networks, 1(4):229–252.
Rafferty, J., Nugent, C. D., Liu, J., and Chen, L. (2017).
From activity recognition to intention recognition for
assisted living within smart homes. IEEE Transac-
tions on Human-Machine Systems, 47(3):368–379.
Trdin, N. and Bohanec, M. (2018). Extending the multi-
criteria decision making method DEX with numeric
attributes, value distributions and relational models.
Central European Journal of Operations Research,
26(1):1–41.
Yamada, N., Sakamoto, K., Kunito, G., Isoda, Y., Ya-
mazaki, K., and Tanaka, S. (2007). Applying ontol-
ogy and probabilistic model to human activity recog-
nition from surrounding things. IPSJ Digital Courier,
3:506–517.
Zavadskas, E. K., Naimavi
ˇ
cien
˙
e, J., Kaklauskas, A., Kruti-
nis, M., and Vaini
¯
unas, P. (2008). Multi-criteria de-
cision support system of intelligent ambient assisted
living environment.
ˇ
Znidar
ˇ
si
ˇ
c, M. and Bohanec, M. (2010). Handling uncer-
tainty in DEX methodology. In URPDM 2010: Pro-
ceedings of the 25th Mini-EURO Conference.
Multi-criteria Modelling Approach for Ambient Assisted Coaching of Senior Adults
93