Aulig, N. and Olhofer, M. (2016). State-based representa-
tion for structural topology optimization and applica-
tion to crashworthiness. In 2016 IEEE Congress on
Evolutionary Computation (CEC), pages 1642–1649,
Vancouver, Canada.
Bendsøe, M. P. and Sigmund, O. (2004). Topology
Optimization - Theory, Methods, and Applications.
Springer Berlin Heidelberg, second edition.
Bujny, M., Aulig, N., Olhofer, M., and Duddeck, F. (2016).
Evolutionary Level Set Method for Crashworthiness
Topology Optimization. In VII European Congress
on Computational Methods in Applied Sciences and
Engineering, Crete Island, Greece.
Bujny, M., Aulig, N., Olhofer, M., and Duddeck, F. (2018).
Identification of optimal topologies for crashworthi-
ness with the evolutionary level set method. Interna-
tional Journal of Crashworthiness, 23(4):395–416.
Cressie, N. (1990). The origins of kriging. Mathematical
Geology, 22(3):239–252.
Duddeck, F., Hunkeler, S., Lozano, P., Wehrle, E., and
Zeng, D. (2016). Topology optimization for crash-
worthiness of thin-walled structures under axial im-
pact using hybrid cellular automata. Structural and
Multidisciplinary Optimization, 54(3):415–428.
Duddeck, F. and Volz, K. (2012). A new Topology Op-
timization Approach for Crashworthiness of Passen-
ger Vehicles Based on Physically Defined Equivalent
Static Loads. In ICrash International Crashworthi-
ness Conference, Milano, Italy.
Eschenauer, H. A., Kobelev, V. V., and Schumacher, A.
(1994). Bubble method for topology and shape
optimization of structures. Structural optimization,
8(1):42–51.
Fang, K. T., Li, R., and Sudjianto, A. (2005). Design and
Modeling for Computer Experiments. CRC Press.
Forrester, A. I. J., S
´
obester, A., and Keane, A. J. (2008). En-
gineering Design via Surrogate Modelling - A Practi-
cal Guide. John Wiley & Sons Ltd.
Guo, X., Zhang, W., and Zhong, W. (2014). Doing Topol-
ogy Optimization Explicitly and Geometrically - A
New Moving Morphable Components Based Frame-
work. Journal of Applied Mechanics, 81(8):081009.
Haber, R. and Bendsøe, M. P. (1998). Problem Formula-
tion, Solution Procedures and Geometric Modeling:
Key issues in Variable-Topology Optimization. In 7th
AIAA/USAF/NASA/ISSMO Symposium on Multidisci-
plinary Analysis and Optimization, St. Louis, Mis-
souri, USA.
Hansen, N. (2005). The CMA Evolution Strategy: A Tuto-
rial. hal-01297037f.
Hansen, N. (2006). The CMA Evolution Strategy: A
Comparing Review. In Towards a New Evolutionary
Computation, Studies in Fuzziness and Soft Comput-
ing, pages 75–102. Springer Berlin Heidelberg. DOI:
10.1007/3-540-32494-1
4.
Hansen, N. and Ostermeier, A. (1996). Adapting arbitrary
normal mutation distributions in evolution strategies:
the covariance matrix adaptation. In Proceedings of
IEEE International Conference on Evolutionary Com-
putation, pages 312–317.
Hansen, N. and Ostermeier, A. (2001). Completely De-
randomized Self-Adaptation in Evolution Strategies.
Evolutionary Computation, 9(2):159–195.
Jones, D. R., Schonlau, M., and Welch, W. J. (1998).
Efficient Global Optimization of Expensive Black-
Box Functions. Journal of Global Optimization,
13(4):455–492.
Kleijnen, J. P. C. (2009). Kriging metamodeling in simu-
lation: A review. European Journal of Operational
Research, 192(3):707–716.
Lee, H.-A. and Park, G.-J. (2015). Nonlinear dynamic
response topology optimization using the equivalent
static loads method. Computer Methods in Applied
Mechanics and Engineering, 283:956–970.
Michell, A. G. M. (1904). LVIII. The limits of economy of
material in frame-structures. Philosophical Magazine,
8(47):589–597.
Mohammadi, H., Riche, R. L., and Touboul, E. (2015).
Making EGO and CMA-ES Complementary for
Global Optimization. In Learning and Intelligent Op-
timization, Lecture Notes in Computer Science, pages
287–292. Springer, Cham.
Mozumder, C., Renaud, J. E., and Tovar, A. (2012). Topom-
etry optimisation for crashworthiness design using hy-
brid cellular automata. International Journal of Vehi-
cle Design, 60(1-2).
Ortmann, C. and Schumacher, A. (2013). Graph and
Heuristic Based Topology Optimization of Crash
Loaded Structures. Structural and Multidisciplinary
Optimization, 47(6):839–854.
Osher, S. and Sethian, J. A. (1988). Fronts propagating
with curvature-dependent speed: Algorithms based on
Hamilton-Jacobi formulations. Journal of Computa-
tional Physics, 79(1):12–49.
Pedersen, C. B. W. (2003). Topology optimization design of
crushed 2d-frames for desired energy absorption his-
tory. Structural and Multidisciplinary Optimization,
25(5-6):368–382.
Rao, S. S. (1996). Engineering Optimization: Theory and
Practice. John Wiley & Sons.
Raponi, E., Bujny, M., Olhofer, M., Aulig, N., Boria, S., and
Duddeck, F. (2017). Kriging-guided Level Set Method
for Crash Topology Optimization. In 7th GACM Col-
loquium on Computational Mechanics for Young Sci-
entists from Academia and Industry, Stuttgart, Ger-
many.
Raponi, E., Bujny, M., Olhofer, M., Aulig, N., Boria, S.,
and Duddeck, F. (2019). Kriging-assisted topology
optimization of crash structures. Computer Methods
in Applied Mechanics and Engineering, 348:730–752.
Storn, R. and Price, K. (1997). Differential Evolution – A
Simple and Efficient Heuristic for global Optimization
over Continuous Spaces. Journal of Global Optimiza-
tion, 11(4):341–359.
Hybrid Kriging-assisted Level Set Method for Structural Topology Optimization
81