clinical guidelines. This application is able to provide
users different recommendations based on their
clinical information.
As future work, applying tools for obtaining
information from patients’ electronic health records
could optimize the efficiency of the designed mobile
CDSS. In the same way, a more flexible way of
gathering the user’s clinical data will be implemented
(e.g. using wearables for obtaining patient data
without needing to introduce them manually).
Likewise, a way to facilitate the ontology generation
for clinicians will also be researched. Finally, it has
been also envisioned the future inclusion of feedback
tools within the mobile application in order to gather
the user appreciation of the system, as well as the
possibility to submit the system to the evaluation of
clinical specialists.
ACKNOWLEDGEMENTS
This work has been developed under the research
project DMG360 (2017-2018 / Exp. number ZE-
2017/00011, in collaboration with INIT Health, SL),
which has been funded by the Department of
Economic Development and Infrastructure of the
Basque Government under the Hazitek program.
REFERENCES
American Diabetes Association, 2016. Classification and
Diagnosis of Diabetes. Diabetes Care 39, S13–S22.
https://doi.org/10.2337/dc16-S005
Balas, E. A., Krishna, S., Kretschmer, R. A., Cheek, T. R.,
Lobach, D. F., Boren, S. A., 2004. Computerized
knowledge management in diabetes care. Med. Care
42, 610–621.
Bellamy, L., Casas, J.-P., Hingorani, A.D., Williams, D.,
2009. Type 2 diabetes mellitus after gestational
diabetes: a systematic review and meta-analysis. Lancet
Lond. Engl. 373, 1773–1779. https://doi.org/10.1016/
S0140-6736(09)60731-5
Caballero-Ruiz, E., García-Sáez, G., Rigla, M., Villaplana,
M., Pons, B., Hernando, M. E., 2017. A web-based
clinical decision support system for gestational
diabetes: Automatic diet prescription and detection of
insulin needs. Int. J. Med. Inf. 102, 35–49.
https://doi.org/10.1016/j.ijmedinf.2017.02.014
Chiefari, E., Arcidiacono, B., Foti, D., Brunetti, A., 2017.
Gestational diabetes mellitus: an updated overview. J.
Endocrinol. Invest. 40, 899–909. https://doi.org/
10.1007/s40618-016-0607-5
Eccher, C., Seyfang, A., Ferro, A., 2014. Implementation
and evaluation of an Asbru-based decision support
system for adjuvant treatment in breast cancer. Comput.
Methods Programs Biomed. 117, 308–321.
https://doi.org/10.1016/j.cmpb.2014.06.021
El-Sappagh, S., Kwak, D., Ali, F., Kwak, K.-S., 2018.
DMTO: a realistic ontology for standard diabetes
mellitus treatment. J. Biomed. Semant. 9.
https://doi.org/10.1186/s13326-018-0176-y
Galopin, A., Bouaud, J., Pereira, S., Seroussi, B., 2015. An
Ontology-Based Clinical Decision Support System for
the Management of Patients with Multiple Chronic
Disorders. Stud. Health Technol. Inform. 216, 275–279.
García-Sáez, G., Rigla, M., Martínez-Sarriegui, I., Shalom,
E., Peleg, M., Broens, T., Pons, B., Caballero-Ruíz, E.,
Gómez, E.J., Hernando, M.E., 2014. Patient-oriented
Computerized Clinical Guidelines for Mobile Decision
Support in Gestational Diabetes. J. Diabetes Sci.
Technol. 8, 238–246. https://doi.org/10.1177/1932296
814526492
Garg, A. X., Adhikari, N. K. J., McDonald, H., Rosas-
Arellano, M. P., Devereaux, P. J., Beyene, J., Sam, J.,
Haynes, R. B., 2005. Effects of computerized clinical
decision support systems on practitioner performance
and patient outcomes: a systematic review. JAMA 293,
1223–1238. https://doi.org/10.1001/jama.293.10.1223
Grimshaw, J. M., Russell, I. T., 1993. Effect of clinical
guidelines on medical practice: a systematic review of
rigorous evaluations. Lancet Lond. Engl. 342, 1317–
1322.
Hu, Q., Huang, Z., Gu, J., 2015. Semantic representation of
evidence-based medical guidelines and its use cases.
Wuhan Univ. J. Nat. Sci. 20, 397–404.
https://doi.org/10.1007/s11859-015-1112-y
Huang, Z., ten Teije, A., van Harmelen, F., Aït-Mokhtar, S.,
2014. Semantic Representation of Evidence-Based
Clinical Guidelines, in: Miksch, S., Riaño, D., ten Teije,
A. (Eds.), Knowledge Representation for Health Care.
Springer International Publishing, Cham, pp. 78–94.
https://doi.org/10.1007/978-3-319-13281-5_6
Institute of Medicine, 1990. Clinical Practice Guidelines:
Directions for a New Program. National Academies
Press (US), Washington (DC).
Isern, D., Sánchez, D., Moreno, A., 2012. Ontology-driven
execution of clinical guidelines. Comput. Methods
Programs Biomed. 107, 122–139. https://doi.org/
10.1016/j.cmpb.2011.06.006
Kolias, V.D., Stoitsis, J., Golemati, S., Nikita, K.S., 2014.
Utilizing Semantic Web Technologies in Healthcare.
Springer Int. Publ. Switz. 16. https://doi.org/10.1007/
978-3-319-06844-2_2
Kredo, T., Bernhardsson, S., Machingaidze, S., Young, T.,
Louw, Q., Ochodo, E., Grimmer, K., 2016. Guide to
clinical practice guidelines: the current state of play. Int.
J. Qual. Health Care 28, 122–128. https://doi.org/
10.1093/intqhc/mzv115
Latoszek-Berendsen, A., Tange, H., Herik, H. J. van den,
Hasman, A., 2010. From Clinical Practice Guidelines to
Computer-interpretable Guidelines. Methods Inf. Med.
49, 550–570. https://doi.org/10.3414/ME10-01-0056
Miremberg, H., Ben-Ari, T., Betzer, T., Raphaeli, H.,
Gasnier, R., Barda, G., Bar, J., Weiner, E., 2018. The
impact of a daily smartphone-based feedback system