Doerr, B., Johannsen, D., and Winzen, C. (2010). Multi-
plicative drift analysis. In Proceedings of the 12th An-
nual Conference on Genetic and Evolutionary Com-
putation, GECCO ’10, pages 1449–1456, New York,
NY, USA. ACM.
Doerr, B., Johannsen, D., and Winzen, C. (2012). Multi-
plicative drift analysis. Algorithmica, 64(4):673–697.
Doerr, B., Lissovoi, A., and Oliveto, P. S. (2019). Evolv-
ing boolean functions with conjunctions and disjunc-
tions via genetic programming. In Proceedings of the
Genetic and Evolutionary Computation Conference,
GECCO 2019, Prague, Czech Republic, July 13-17,
2019, pages 1003–1011.
Forsyth, R. (1981). BEAGLE a Darwinian approach to pat-
tern recognition. Kybernetes, 10(3):159–166.
Goldman, B. W. and Punch, W. F. (2013). Reducing
Wasted Evaluations in Cartesian Genetic Program-
ming, pages 61–72. Springer Berlin Heidelberg,
Berlin, Heidelberg.
He, J. and Yao, X. (2001). Drift analysis and average time
complexity of evolutionary algorithms. Artificial In-
telligence, 127(1):57 – 85.
He, J. and Yao, X. (2004). A study of drift analysis for esti-
mating computation time of evolutionary algorithms.
Natural Computing, 3(1):21–35.
Hicklin, J. (1986). Application of the genetic algorithm to
automatic program generation. Master’s thesis.
Kalganova, T. and Miller, J. F. (1997). Evolutionary Ap-
proach to Design Multiple-valued Combinational Cir-
cuits. In Proc. Intl. Conf. Applications of Computer
Systems (ACS).
Koetzing, T., Sutton, A. M., Neumann, F., and O’Reilly,
U.-M. (2014). The max problem revisited: The im-
portance of mutation in genetic programming. Theo-
retical Computer Science, 545:94–107.
Koza, J. (1990). Genetic Programming: A paradigm for ge-
netically breeding populations of computer programs
to solve problems. Technical Report STAN-CS-90-
1314, Dept. of Computer Science, Stanford Univer-
sity.
Koza, J. R. (1992). Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selec-
tion. MIT Press, Cambridge, MA, USA.
Koza, J. R. (1994). Genetic Programming II: Automatic
Discovery of Reusable Programs. MIT Press, Cam-
bridge Massachusetts.
Langdon, W. B. and Poli, R. (2002). Foundations of Genetic
Programming. Springer-Verlag.
Lissovoi, A. and Oliveto, P. S. (2018). On the time and
space complexity of genetic programming for evolv-
ing boolean conjunctions. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelli-
gence, (AAAI-18), the 30th innovative Applications
of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial In-
telligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 1363–1370.
Mambrini, A. and Oliveto, P. S. (2016). On the Analysis
of Simple Genetic Programming for Evolving Boolean
Functions, pages 99–114. Springer International Pub-
lishing, Cham.
Miller, J. F. (1999). An empirical study of the efficiency
of learning boolean functions using a cartesian ge-
netic programming approach. In Proceedings of the
Genetic and Evolutionary Computation Conference,
volume 2, pages 1135–1142, Orlando, Florida, USA.
Morgan Kaufmann.
Miller, J. F. and Smith, S. L. (2006). Redundancy and com-
putational efficiency in cartesian genetic program-
ming. IEEE Transactions on Evolutionary Computa-
tion, 10(2):167–174.
Miller, J. F., Thomson, P., and Fogarty, T. (1997). De-
signing Electronic Circuits Using Evolutionary Algo-
rithms. Arithmetic Circuits: A Case Study.
Moraglio, A. and Mambrini, A. (2013). Runtime analysis of
mutation-based geometric semantic genetic program-
ming for basis functions regression. In GECCO ’13:
Proceeding of the fifteenth annual conference on Ge-
netic and evolutionary computation conference, pages
989–996, Amsterdam, The Netherlands. ACM.
Moraglio, A., Mambrini, A., and Manzoni, L. (2013). Run-
time analysis of mutation-based geometric semantic
genetic programming on boolean functions. In Pro-
ceedings of the Twelfth Workshop on Foundations of
Genetic Algorithms XII, FOGA XII ’13, pages 119–
132, New York, NY, USA. ACM.
Neumann, F., O’Reilly, U.-M., and Wagner, M. (2011).
Computational Complexity Analysis of Genetic Pro-
gramming - Initial Results and Future Directions,
pages 113–128. Springer New York, New York, NY.
Poli, R., McPhee, N. F., and Rowe, J. E. (2004). Exact
schema theory and markov chain models for genetic
programming and variable-length genetic algorithms
with homologous crossover. Genetic Programming
and Evolvable Machines, 5(1):31–70.
Turner, A. and Miller, J. (2014). Cartesian genetic pro-
gramming: Why no bloat? In Nicolau, M., Kraw-
iec, K., Heywood, M. I., Castelli, M., Garcia-Sanchez,
P., Merelo, J. J., Rivas Santos, V. M., and Sim, K.,
editors, 17th European Conference on Genetic Pro-
gramming, volume 8599 of LNCS, pages 222–233,
Granada, Spain. Springer.
Woodward, J. R. (2006). Complexity and Cartesian Ge-
netic Programming, pages 260–269. Springer Berlin
Heidelberg, Berlin, Heidelberg.
Yu, T. and Miller, J. (2001). Neutrality and the evolvability
of Boolean function landscape. In Genetic Program-
ming, Proceedings of EuroGP’2001, volume 2038 of
LNCS, pages 204–217, Lake Como, Italy. Springer-
Verlag.
On the Time Complexity of Simple Cartesian Genetic Programming
179