Abdollahi, B. and Nasraoui, O. (2016). Explainable matrix
factorization for collaborative filtering. In Proceed-
ings of the 25th International Conference Companion
on World Wide Web. ACM Press.
Abdollahi, B. and Nasraoui, O. (2017). Using explainability
for constrained matrix factorization. In Proceedings of
the Eleventh ACM Conference on Recommender Sys-
tems, pages 79–83, Como, Italy. ACM.
Ai, Q., Azizi, V., Chen, X., and Zhang, Y. (2018). Learn-
ing heterogeneous knowledge base embeddings for
explainable recommendation. Algorithms, 11(9).
Alshammari, M., Nasraoui, O., and Abdollahi, B. (2018).
A semantically aware explainable recommender sys-
tem using asymmetric matrix factorization. In Pro-
ceedings of the 10th International Joint Conference
on Knowledge Discovery, Knowledge Engineering
and Knowledge Management. SCITEPRESS - Sci-
ence and Technology Publications.
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak,
R., and Ives, Z. (2007). DBpedia: A nucleus for a web
of open data. In The Semantic Web, pages 722–735.
Springer Berlin Heidelberg.
Bellini, V., Schiavone, A., Di Noia, T., Ragone, A., and
Di Sciascio, E. (2018). Knowledge-aware autoen-
coders for explainable recommender systems. In Pro-
ceedings of the 3rd Workshop on Deep Learning for
Recommender Systems, DLRS 2018, pages 24–31,
New York, NY, USA. ACM.
BenAbdallah, J., Caicedo, J. C., Gonzalez, F. A., and Nas-
raoui, O. (2010). Multimodal image annotation us-
ing non-negative matrix factorization. In Proceedings
of the 2010 IEEE/WIC/ACM International Conference
on Web Intelligence and Intelligent Agent Technology
- Volume 01, WI-IAT ’10, pages 128–135, Washing-
ton, DC, USA. IEEE Computer Society.
Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked
data - the story so far. International Journal on Se-
mantic Web and Information Systems, 5(3):1–22.
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Tay-
lor, J. (2008). Freebase: a collaboratively created
graph database for structuring human knowledge. In
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1247–
1250, Vancouver, Canada. ACM.
Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka,
Jr., E. R., and Mitchell, T. M. (2010). Toward an ar-
chitecture for never-ending language learning. In Pro-
ceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence, AAAI’10, pages 1306–1313.
AAAI Press.
Funk, S. (2006). Netflix update: Try this at home. Technical
report.
Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factor-
ization techniques for recommender systems. Com-
puter, 42(8):30–37.
Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E.
(2016). A review of relational machine learning
for knowledge graphs. Proceedings of the IEEE,
104(1):11–33.
Passant, A. (2010). Measuring semantic distance on linking
data and using it for resources recommendations. In
AAAI spring symposium: linked data meets artificial
intelligence, volume 77, page 123.
Salakhutdinov, R. and Mnih, A. (2007). Probabilistic ma-
trix factorization. In Proceedings of the 20th Inter-
national Conference on Neural Information Process-
ing Systems, NIPS’07, pages 1257–1264, USA. Cur-
ran Associates Inc.
Shi, Y., Larson, M., and Hanjalic, A. (2013). Mining con-
textual movie similarity with matrix factorization for
context-aware recommendation. ACM Trans. Intell.
Syst. Technol., 4(1):16:1–16:19.
Singhal, A. (2012). Introducing the knowledge graph:
things, not strings. Technical report, Google.
Suchanek, F. M., Kasneci, G., and Weikum, G. (2007).
Yago: Core of semantic knowledge. In Proceedings
of the 16th international conference on World Wide
Web - WWW '07. ACM Press.
Vrande
ˇ
ci
´
c, D. (2012). Wikidata: a new platform for collab-
orative data collection. In Proceedings of the 21st in-
ternational conference companion on World Wide Web
- WWW '12 Companion. ACM Press.
Wang, H., Zhang, F., Wang, J., Zhao, M., Li, W., Xie,
X., and Guo, M. (2018). Ripplenet: Propagating
user preferences on the knowledge graph for recom-
mender systems. In Proceedings of the 27th ACM
International Conference on Information and Knowl-
edge Management, CIKM ’18, pages 417–426, New
York, NY, USA. ACM.
KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval
88