CUP F74G14000200008 F19G14000910008). We
gratefully acknowledge the support of NVIDIA Cor-
poration with the donation of the Titan Xp GPU used
for this research.
REFERENCES
Agarwal, A., Xie, B., Vovsha, I., Rambow, O., and Passon-
neau, R. (2011). Sentiment analysis of twitter data.
In Proceedings of the Workshop on Languages in So-
cial Media, LSM ’11, pages 30–38, Stroudsburg, PA,
USA. Association for Computational Linguistics.
Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D.,
Bradley, J. K., Meng, X., Kaftan, T., Franklin, M. J.,
Ghodsi, A., and Zaharia, M. (2015). Spark sql: Re-
lational data processing in spark. In Proceedings of
the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, pages 1383–
1394, New York, NY, USA. ACM.
Baccianella, S., Esuli, A., and Sebastiani, F. (2010). Sen-
tiWordNet 3.0: An Enhanced Lexical Resource for
Sentiment Analysis and Opinion Mining. In Calzo-
lari, N., Choukri, K., Maegaard, B., Mariani, J., Odijk,
J., Piperidis, S., Rosner, M., and Tapias, D., editors,
Proceedings of the Seventh International Conference
on Language Resources and Evaluation (LREC’10),
pages 2200–2204, Valletta, Malta. European Lan-
guage Resources Association (ELRA).
Boratto, L., Carta, S., Fenu, G., and Saia, R. (2016a). Rep-
resenting items as word-embedding vectors and gen-
erating recommendations by measuring their linear in-
dependence. RecSys Posters, 140.
Boratto, L., Carta, S., Fenu, G., and Saia, R. (2016b). Us-
ing neural word embeddings to model user behavior
and detect user segments. Knowledge-Based Systems,
108:5–14.
Buscaldi, D., Gangemi, A., and Recupero, D. R., editors
(2018). Semantic Web Challenges - 5th SemWebEval
Challenge at ESWC 2018, Heraklion, Greece, June
3-7, 2018, Revised Selected Papers, volume 927 of
Communications in Computer and Information Sci-
ence. Springer.
Cambria, E., Havasi, C., and Hussain, A. (2012). Sentic-
Net 2: A Semantic and Affective Resource for Opin-
ion Mining and Sentiment Analysis. In Youngblood,
G. M. and McCarthy, P. M., editors, Proceedings of
the Twenty-Fifth International Florida Artificial Intel-
ligence Research Society Conference, pages 202–207.
AAAI Press.
Cambria, E., Speer, R., Havasi, C., and Hussain, A.
(2010). SenticNet: A Publicly Available Semantic Re-
source for Opinion Mining. In AAAI Fall Symposium:
Commonsense Knowledge, volume FS-10-02 of AAAI
Technical Report, pages 14–18. AAAI.
da Silva, N. F., Hruschka, E. R., and Hruschka, E. R. (2014).
Tweet Sentiment Analysis with Classifier Ensembles.
Decis. Support Syst., 66(C):170–179.
Dess
`
ı, D., Fenu, G., Marras, M., and Reforgiato Recupero,
D. (2018). Coco: Semantic-enriched collection of on-
line courses at scale with experimental use cases. In
Rocha,
´
A., Adeli, H., Reis, L. P., and Costanzo, S.,
editors, Trends and Advances in Information Systems
and Technologies, pages 1386–1396. Springer Inter-
national Publishing.
Devitt, A. and Ahmad, K. (2007). Sentiment polarity iden-
tification in financial news: A cohesion-based ap-
proach. pages 984–991, Prague, CZ. Association for
Computational Linguistics.
Dragoni, M. and Recupero, D. R. (2016). Challenge on
fine-grained sentiment analysis within ESWC2016. In
Semantic Web Challenges - Third SemWebEval Chal-
lenge at ESWC 2016, Heraklion, Crete, Greece, May
29 - June 2, 2016, Revised Selected Papers, pages 79–
94.
Dragoni, M., Tettamanzi, A. G., and Pereira, C. D. C.
(2016). Dranziera: an evaluation protocol for multi-
domain opinion mining. In Tenth International
Conference on Language Resources and Evaluation
(LREC 2016), pages 267–272. European Language
Resources Association (ELRA).
Dridi, A. and Reforgiato Recupero, D. (2017). Leverag-
ing semantics for sentiment polarity detection in so-
cial media. International Journal of Machine Learn-
ing and Cybernetics.
Federici, M. and Dragoni, M. (2016). A knowledge-based
approach for aspect-based opinion mining. In Sack,
H., Dietze, S., Tordai, A., and Lange, C., editors,
Semantic Web Challenges, pages 141–152, Cham.
Springer International Publishing.
Filatova, E. (2012). Irony and sarcasm: Corpus generation
and analysis using crowdsourcing. In Proceedings of
LREC 2012, pages 392–398.
Gangemi, A., Presutti, V., and Recupero, D. R. (2014).
Frame-based detection of opinion holders and topics:
A model and a tool. IEEE Comp. Int. Mag., 9(1):20–
30.
Georgakopoulos, S. V., Tasoulis, S. K., Vrahatis, A. G.,
and Plagianakos, V. P. (2018). Convolutional neu-
ral networks for toxic comment classification. CoRR,
abs/1802.09957.
Go, A., Bhayani, R., and Huang, L. (2009). Twitter
Sentiment Classification using Distant Supervision.
CS224N Project Report, Stanford University.
Ji, S., Satish, N., Li, S., and Dubey, P. (2016). Parallelizing
word2vec in shared and distributed memory. CoRR,
abs/1604.04661.
Joulin, A., Grave, E., Bojanowski, P., Douze, M., J
´
egou, H.,
and Mikolov, T. (2016). Fasttext. zip: Compressing
text classification models. arXiv:1612.03651.
Kansara, K. B. and Shekokar, N. M. (2012). A framework
for cyberbullying detection in social network. vol-
ume 5, pages 494–498.
Liu, H. and Singh, P. (2004). ConceptNet – A Practical
Commonsense Reasoning Tool-Kit. BT Technology
Journal, 22(4):211–226.
Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y.,
and Potts, C. (2011). Learning word vectors for sen-
A Supervised Multi-class Multi-label Word Embeddings Approach for Toxic Comment Classification
111