Demaine, E. D. and Rudoy, M. (2018). A simple proof
that the (n2-1)-puzzle is hard. Theor. Comput. Sci.,
732:80–84.
E. Rumelhart, G. Hinton, R. W. (1985). Learning internal
representations by error propagation.
Felner, A. and Adler, A. (2005). Solving the 24-puzzle with
instance dependent pattern databases. In SARA-05,
pages 248–260.
Felner, A., Korf, R. E., and Hanan, S. (2004). Additive
pattern database heuristics. Journal of Artificial Intel-
ligence Research, 22:279–318.
Felner, A., Korf, R. E., Meshulam, R., and Holte, R. C.
(2007). Compressed pattern databases. J. Artif. Intell.
Res., 30:213–247.
Geron, A. (2017). Hands-On Machine Learning with Scikit-
Learn and TensorFlow, pages 275–312. First edition.
Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A for-
mal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and
Cybernetics, SSC-4(2):100–107.
Haykin, S. (1999). Neural Networks: A Comprehensive
Foundation. Prentice Hall.
Korf, R. E. (1999). Sliding-tile puzzles and Rubik’s Cube
in AI research. IEEE Intelligent Systems, 14:8–12.
Korf, R. E. and Taylor, L. A. (1996). Finding optimal solu-
tions to the twenty-four puzzle. In Proceedings of the
Thirteenth National Conference on Artificial Intelli-
gence and Eighth Innovative Applications of Artificial
Intelligence Conference, AAAI 96, IAAI 96, Portland,
Oregon, USA, August 4-8, 1996, Volume 2., pages
1202–1207.
Luna, R. and Bekris, K. (2011). Efficient and complete
centralized multi-robot path planning. In IROS, pages
3268–3275.
M. Ernandes, M. G. (2004). Likely-admissible and sub-
symbolic heuristics.
M. Samadi, A. Felner, J. S. (2008). Learning from multiple
heuristics.
Parberry, I. (1995). A real-time algorithm for the (n
2
-1)-
puzzle. Inf. Process. Lett., 56(1):23–28.
Parberry, I. (2015a). Memory-efficient method for fast com-
putation of short 15-puzzle solutions. IEEE Trans.
Comput. Intellig. and AI in Games, 7(2):200–203.
Parberry, I. (2015b). Solving the (n2 - 1)-puzzle with 8/3 n3
expected moves. Algorithms, 8(3):459–465.
Ratner, D. and Warmuth, M. K. (1986). Finding a shortest
solution for the N x N extension of the 15-puzzle is
intractable. In AAAI, pages 168–172.
Ratner, D. and Warmuth, M. K. (1990). Nxn puzzle
and related relocation problem. J. Symb. Comput.,
10(2):111–138.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning representations by back-propagating errors.
Nature, 323:533–.
S. Arfaee, S. Zilles, R. H. (2011). Learning heuristic func-
tions for large state spaces.
Schmidhuber, J. (2014). Deep learning in neural networks:
An overview. CoRR, abs/1404.7828.
Sharon, G., Stern, R., Felner, A., and Sturtevant, N. R.
(2015). Conflict-based search for optimal multi-agent
pathfinding. Artif. Intell., 219:40–66.
Sharon, G., Stern, R., Goldenberg, M., and Felner, A.
(2011). Pruning techniques for the increasing cost tree
search for optimal multi-agent pathfinding. In Sympo-
sium on Combinatorial Search (SOCS).
Sharon, G., Stern, R., Goldenberg, M., and Felner, A.
(2013). The increasing cost tree search for optimal
multi-agent pathfinding. Artif. Intell., 195:470–495.
Slocum, J. and Sonneveld, D. (2006). The 15 Puzzle.
Slocum Puzzle Foundation.
Standley, T. (2010). Finding optimal solutions to coopera-
tive pathfinding problems. In AAAI, pages 173–178.
Surynek, P. (2009). A novel approach to path planning for
multiple robots in bi-connected graphs. In ICRA 2009,
pages 3613–3619.
Surynek, P. and Michal
´
ık, P. (2017). The joint movement
of pebbles in solving the ( n
2
- 1 )-puzzle subopti-
mally and its applications in rule-based cooperative
path-finding. Autonomous Agents and Multi-Agent
Systems, 31(3):715–763.
van der Walt, S., Colbert, S. C., and Varoquaux, G. (2011).
The numpy array: A structure for efficient numerical
computation. Computing in Science and Engineering,
13(2):22–30.
Wilson, R. M. (1974). Graph puzzles, homotopy, and the
alternating group. Journal of Combinatorial Theory,
Series B, 16(1):86 – 96.
NCTA 2019 - 11th International Conference on Neural Computation Theory and Applications
478