REFERENCES
Akbik, A., Blythe, D., and Vollgraf, R. (2018). Contextual
string embeddings for sequence labeling. In Proceed-
ings of the 27th International Conference on Compu-
tational Linguistics, pages 1638–1649.
Akhondi, S. A., Klenner, A. G., Tyrchan, C., Manchala,
A. K., Boppana, K., Lowe, D., Zimmermann, M., Ja-
garlapudi, S. A., Sayle, R., Kors, J. A., et al. (2014).
Annotated chemical patent corpus: a gold standard for
text mining. PloS one, 9(9):e107477.
Bengio, Y., Simard, P., Frasconi, P., et al. (1994). Learn-
ing long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks,
5(2):157–166.
Bergstra, J. S., Bardenet, R., Bengio, Y., and K
´
egl, B.
(2011). Algorithms for hyper-parameter optimization.
In Advances in Neural Information Processing Sys-
tems, pages 2546–2554.
Chiu, J. P. and Nichols, E. (2016). Named entity recogni-
tion with bidirectional LSTM-CNNs. Transactions of
the Association for Computational Linguistics, 4:357–
370.
Corbett, P. and Boyle, J. (2018). Chemlistem: chemical
named entity recognition using recurrent neural net-
works. Journal of Cheminformatics, 10(1):59.
Crichton, G., Pyysalo, S., Chiu, B., and Korhonen, A.
(2017). A neural network multi-task learning ap-
proach to biomedical named entity recognition. BMC
Bioinformatics, 18(1):368.
Dernoncourt, F., Lee, J. Y., and Szolovits, P. (2017).
NeuroNER: an easy-to-use program for named-entity
recognition based on neural networks. arXiv preprint
arXiv:1705.05487.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.
Eltyeb, S. and Salim, N. (2014). Chemical named entities
recognition: a review on approaches and applications.
Journal of Cheminformatics, 6(1):17.
Finkel, J. R., Grenager, T., and Manning, C. (2005). Incor-
porating non-local information into information ex-
traction systems by gibbs sampling. In Proceedings of
the 43rd annual meeting on Association for Compu-
tational Linguistics, pages 363–370. Association for
Computational Linguistics.
Gal, Y. and Ghahramani, Z. (2016). A theoretically
grounded application of dropout in recurrent neural
networks. In Advances in Neural Information Pro-
cessing Systems, pages 1019–1027.
Geyer, K., Greenfield, K., Mensch, A., and Simek, O.
(2016). Named Entity Recognition in 140 Characters
or Less. In # Microposts, pages 78–79.
Giorgi, J. M. and Bader, G. D. (2018). Transfer learning
for biomedical named entity recognition with neural
networks. Bioinformatics, 34(23):4087–4094.
Graves, A. and Schmidhuber, J. (2005). Framewise
phoneme classification with bidirectional LSTM and
other neural network architectures. Neural Networks,
18(5-6):602–610.
Habibi, M., Weber, L., Neves, M., Wiegandt, D. L., and
Leser, U. (2017). Deep learning with word embed-
dings improves biomedical named entity recognition.
Bioinformatics, 33(14):i37–i48.
Hemati, W. and Mehler, A. (2019). LSTMVoter: chemi-
cal named entity recognition using a conglomerate of
sequence labeling tools. Journal of Cheminformatics,
11(1):3.
Hochreiter, S. (1998). The vanishing gradient problem dur-
ing learning recurrent neural nets and problem solu-
tions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 6(2):107–116.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8):1735–1780.
Huang, Z., Xu, W., and Yu, K. (2015). Bidirectional LSTM-
CRF models for sequence tagging. arXiv preprint
arXiv:1508.01991.
Jelier, R., Jenster, G., Dorssers, L. C., van der Eijk, C. C.,
van Mulligen, E. M., Mons, B., and Kors, J. A.
(2005). Co-occurrence based meta-analysis of scien-
tific texts: retrieving biological relationships between
genes. Bioinformatics, 21(9):2049–2058.
Khare, R., Leaman, R., and Lu, Z. (2014). Accessing
biomedical literature in the current information land-
scape. In Biomedical Literature Mining, pages 11–31.
Springer.
Kim, S., Yoon, J., Park, K.-M., and Rim, H.-C. (2005).
Two-phase biomedical named entity recognition using
a hybrid method. In International Conference on Nat-
ural Language Processing, pages 646–657. Springer.
Krallinger, M., Rabal, O., Leitner, F., Vazquez, M., Salgado,
D., Lu, Z., Leaman, R., Lu, Y., Ji, D., Lowe, D. M.,
et al. (2015). The CHEMDNER corpus of chemicals
and drugs and its annotation principles. Journal of
Cheminformatics, 7(1):S2.
Kudo, T. (2010). CRF++: Yet another CRF toolkit
(2005). Available under LGPL from the following
URL: http://crfpp. sourceforge. net.
Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001).
Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data. In Proceed-
ings of the Eighteenth International Conference on
Machine Learning, ICML ’01, pages 282–289, San
Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.
Lample, G., Ballesteros, M., Subramanian, S., Kawakami,
K., and Dyer, C. (2016). Neural architectures
for named entity recognition. arXiv preprint
arXiv:1603.01360.
Li, J., Sun, Y., Johnson, R. J., Sciaky, D., Wei, C.-H., Lea-
man, R., Davis, A. P., Mattingly, C. J., Wiegers, T. C.,
and Lu, Z. (2016). BioCreative V CDR task cor-
pus: a resource for chemical disease relation extrac-
tion. Database, 2016:1–10.
Ma, X. and Hovy, E. (2016). End-to-end sequence labeling
via bi-directional LSTMS-CNNs-CRF. arXiv preprint
arXiv:1603.01354.
Chemical Named Entity Recognition with Deep Contextualized Neural Embeddings
143