radiologists, IRIS will be a great improvement of
existing search engines – currently radiologists use
in-house teaching file search engines with a limited
search capability.
REFERENCES
Akg
¨
ul, C. B., Rubin, D. L., Napel, S., Beaulieu, C. F.,
Greenspan, H., and Acar, B. (2011). Content-based
image retrieval in radiology: current status and future
directions. Journal of Digital Imaging, 24(2):208–
222.
Channin, D. S., Mongkolwat, P., Kleper, V., Sepukar, K.,
and Rubin, D. L. (2010). The cabig
TM
annotation
and image markup project. Journal of digital imag-
ing, 23(2):217–225.
Dashevsky, B., Gorovoy, M., Weadock, W. J., and Juluru,
K. (2015). Radiology teaching files: an assessment
of their role and desired features based on a national
survey. Journal of digital imaging, 28(4):389–398.
Deshpande, P., Rasin, A., Brown, E., Furst, J., Raicu, D.,
Montner, S., and Armato III, S. (2017). An integrated
database and smart search tool for medical knowledge
extraction from radiology teaching files. In Medical
Informatics and Healthcare, pages 10–18.
Deshpande, P., Rasin, A., Brown, E., Furst, J., Raicu, D. S.,
Montner, S. M., and Armato, S. G. (2018a). Big
data integration case study for radiology data sources.
In 2018 IEEE Life Sciences Conference (LSC), pages
195–198. IEEE.
Deshpande, P., Rasin, A., Brown, E. T., Furst, J., Montner,
S. M., Armato III, S. G., and Raicu, D. S. (2018b).
Augmenting medical decision making with text-based
search of teaching file repositories and medical on-
tologies: Text-based search of radiology teaching
files. International Journal of Knowledge Discovery
in Bioinformatics (IJKDB), 8(2):18–43.
Deshpande, P., Rasin, A., Furst, J., Raicu, D., and Antani,
S. (2019a). Diis: A biomedical data access framework
for aiding data driven research supporting fair princi-
ples. Data, 4(2):54.
Deshpande, P., Rasin, A., Jun, S., Sungmin, K., Brown, E.,
Furst, J., Raicu, D. S., Montner, S. M., and Armato,
S. G. (2019b). Ontology-based radiology teaching
files summarization, coverage, and integration. Jour-
nal of digital imaging, page yet to appear.
Do, B. H., Wu, A., Biswal, S., Kamaya, A., and Rubin,
D. L. (2010). Informatics in radiology: Radtf: A se-
mantic search–enabled, natural language processor–
generated radiology teaching file 1. Radiographics,
30(7):2039–2048.
Dos-Santos, M. and Fujino, A. (2012). Interactive ra-
diology teaching file system: the development of
a mirc-compliant and user-centered e-learning re-
source. In Engineering in Medicine and Biology So-
ciety (EMBC), 2012 Annual International Conference
of the IEEE, pages 5871–5874. IEEE.
Gutmark, R., Halsted, M. J., Perry, L., and Gold, G. (2007).
Use of computer databases to reduce radiograph read-
ing errors. Journal of the American College of Radi-
ology, 4(1):65–68.
Hwang, K. H., Lee, H., Koh, G., Willrett, D., and Rubin,
D. L. (2016). Building and querying rdf/owl database
of semantically annotated nuclear medicine images.
Journal of Digital Imaging, pages 1–7.
Kamauu, A. W. C., DuVall, S. L., Robison, R. J., Liimatta,
A. P., Richard H. Wiggins, I., and Avrin, D. E. (2006).
Vendor-neutral case input into a server-based digital
teaching file system. RadioGraphics, 26(6):1877–
1885. PMID: 17102058.
Kansagra, A. P., John-Paul, J. Y., Chatterjee, A. R.,
Lenchik, L., Chow, D. S., Prater, A. B., Yeh, J., Doshi,
A. M., Hawkins, C. M., Heilbrun, M. E., et al. (2016).
Big data and the future of radiology informatics. Aca-
demic radiology, 23(1):30–42.
Korenblum, D., Rubin, D., Napel, S., Rodriguez, C., and
Beaulieu, C. (2011). Managing biomedical image
metadata for search and retrieval of similar images.
Journal of digital imaging, 24(4):739–748.
Li, Y., Liang, X., Hu, Z., and Xing, E. P. (2018). Hybrid
retrieval-generation reinforced agent for medical im-
age report generation. In Advances in Neural Infor-
mation Processing Systems, pages 1537–1547.
Ling, Z. J., Tran, Q. T., Fan, J., Koh, G. C., Nguyen, T., Tan,
C. S., Yip, J. W., and Zhang, M. (2014). Gemini: an
integrative healthcare analytics system. Proceedings
of the VLDB Endowment, 7(13):1766–1771.
M
¨
uller, H., M
¨
uller, W., Squire, D. M., Marchand-Maillet,
S., and Pun, T. (2001). Performance evaluation in
content-based image retrieval: overview and propos-
als. Pattern recognition letters, 22(5):593–601.
Pinho, E., Godinho, T., Valente, F., and Costa, C. (2017). A
multimodal search engine for medical imaging stud-
ies. Journal of digital imaging, 30(1):39–48.
Russell-Rose, T. and Chamberlain, J. (2017). Expert
search strategies: The information retrieval practices
of healthcare information professionals. JMIR, 5(4).
Simpson, M. S., Demner-Fushman, D., Antani, S. K., and
Thoma, G. R. (2014). Multimodal biomedical image
indexing and retrieval using descriptive text and global
feature mapping. Information retrieval, 17(3):229–
264.
Talanow, R. (2009). Radiology teacher: a free, internet-
based radiology teaching file server. Journal of the
American College of Radiology, 6(12):871–875.
Thies, C., G
¨
uld, M. O., Fischer, B., and Lehmann, T. M.
(2004). Content-based queries on the casimage
database within the irma framework. In Workshop of
the Cross-Language Evaluation Forum for European
Languages, pages 781–792. Springer.
Tsikrika, T., de Herrera, A. G. S., and M
¨
uller, H. (2011).
Assessing the scholarly impact of imageclef. In
Forner, P., Gonzalo, J., Kek
¨
al
¨
ainen, J., Lalmas, M.,
and de Rijke, M., editors, Multilingual and Multi-
modal Information Access Evaluation, pages 95–106.
Springer Berlin Heidelberg.
Weinberger, E., Jakobovits, R., and Halsted, M. (2002).
Mypacs. net: a web-based teaching file authoring tool.
American Journal of Roentgenology, 179(3):579–582.
Multimodal Ranked Search over Integrated Repository of Radiology Data Sources
383