Table 3: Accuracy for classification (in %) of Pima Indians Diabetes data with additional Gaussian noise to all inputs σ
i
=
0.1∆x
i
, where ∆x
i
is a range of x
i
, i = 1,2, 3,4.
System
¯
σ
i
Incorrect Unclassified Unclassified Correct
incorrect suggestion correct suggestion
lrn./test lrn./test lrn./test lrn./test
Logical-type, no noise
singleton — 11.5/29.7 — — 88.5/70.3
Logical-type, noised inputs
singleton — 32.3/33.1 — — 67.7/66.9
0,01 16, 6/18,0 15, 7/15,1 19,4/20, 2 48,3/46, 8
0,02 7,4/7, 9 24,9/25,2 38, 2/37,7 29, 6/29,3
0,03 3,2/3, 5 29,1/29,5 51, 2/50,7 16, 6/16,3
fuzzy
0,10 0,0/0, 0 32,3/33,1 67, 6/66,8 0,1/0, 1
-
0,20 0,0/0, 0 32,3/33,1 67, 7/66,9 0,0/0, 0
rough
0,30 0,0/0, 0 32,3/33,1 67, 7/66,9 0,0/0, 0
0,40 0,0/0, 0 32,3/33,1 67, 7/66,9 0,0/0, 0
0,50 0,0/0, 0 32,3/33,1 67, 7/66,9 0,0/0, 0
0,60 0,0/0, 0 32,3/33,1 67, 7/66,9 0,0/0, 0
1,00 0,0/0, 0 32,3/33,1 67, 7/66,9 0,0/0, 0
0.01 32.3/33.2 — — 67.7/66.8
0.02 32.1/33.0 — — 67.9/67.0
0.03 32.3/33.8 — — 67.7/66.2
non
0.10 32.1/31.9 — — 67.9/68.1
-
0.20 32.2/32.7 — — 67.8/67.3
singleton
0.30 32.0/33.1 — — 68.0/66.9
0.40 31.8/33.1 — — 68.2/66.9
0.50 31.8/33.3 — — 68.2/66.7
0.60 31.7/32.2 — — 68.3/67.8
1.00 31.7/33.1 — — 68.3/66.9
Conjunction-type, no noise
singleton — 11.5/28.6 — — 88.5/71.4
Conjunction-type, noised inputs
singleton — 32.8/33.3 — — 67.2/66.7
0,01 15, 4/16,9 17, 4/16,4 22,0/22, 9 45,2/43, 8
0,02 6,0/6, 5 26,8/26,8 42, 1/42,3 25, 1/24,3
0,03 2,2/2, 6 30,6/30,8 54, 3/54,1 12, 9/12,6
fuzzy
0,10 0,0/0, 0 32,8/33,3 67, 1/66,6 0,1/0, 1
-
0,20 0,0/0, 0 32,8/33,3 67, 2/66,7 0,0/0, 0
rough
0,30 0,0/0, 0 32,8/33,3 67, 2/66,7 0,0/0, 0
0,40 0,0/0, 0 32,8/33,3 67, 2/66,7 0,0/0, 0
0,50 0,0/0, 0 32,8/33,3 67, 2/66,7 0,0/0, 0
0,60 0,0/0, 0 32,8/33,3 67, 2/66,7 0,0/0, 0
1,00 0,0/0, 0 32,8/33,3 67, 2/66,7 0,0/0, 0
0.01 32.6/33.6 — — 67.4/66.4
0.02 32.3/32.8 — — 67.7/67.2
0.03 31.7/32.7 — — 68.3/67.3
non
0.10 28.3/29.9 — — 71.7/70.1
-
0.20 28.8/29.6 — — 71.2/70.4
singleton
0.30 30.4/30.6 — — 69.6/69.4
0.40 32.0/32.4 — — 68.0/67.6
0.50 33.3/33.4 — — 66.7/66.6
0.60 33.8/33.5 — — 66.2/66.5
1.00 34.8/34.6 — — 65.2/65.4
the input domains and are expressed by parameters
σ
i
(spreads) taking values from 0 to 1. When the
value is equal to 0, the both classifiers are identical
to the corresponding singleton classifiers. The value
of the spread close to 1 means that uncertainty cov-
ers the whole range, i.e., the actual input value can
be any value in the range regardless of the actually
measured one. In such situation, a correct classifi-
cation cannot be expected. Besides, in the case of
classic non-singleton fuzzification, similar results in
the whole range of spread can be observed in Tables
1-3. The numbers of correct classifications achieve
the barely perceptible maximum. Moreover, for in-
dividual classifiers, the maximum is reached at dif-
Extended Possibilistic Fuzzification for Classification
349