league, UvA) for allowing us to use his server as a
computing platform, Hans-Paul Schwefel (Professor
Emeritus, University of Dortmund) for answering our
questions about the Schwefel benchmark function by
email, and Ying Tan (Professor, Peking University),
Abdellah Salhi (Professor, University of Essex), and
Eric Fraga (Professor, UCL London) for answering
our questions on FWA and PPA respectively.
REFERENCES
Alba, E. and Dorronsoro, B. (2005). The explo-
ration/exploitation tradeoff in dynamic cellular genetic
algorithms. IEEE transactions on evolutionary compu-
tation, 9(2):126–142.
Audibert, J.-Y., Munos, R., and Szepesv
´
ari, C. (2009).
Exploration–exploitation tradeoff using variance es-
timates in multi-armed bandits. Theoretical Computer
Science, 410(19):1876–1902.
Cheraitia, M., Haddadi, S., and Salhi, A. (2017). Hybridizing
plant propagation and local search for uncapacitated
exam scheduling problems. International Journal of
of Services and Operations Management.
El-Beltagy, M. A. and Keane, A. J. (2001). Evolutionary
optimization for computationally expensive problems
using gaussian processes. In Proc. Int. Conf. on Artifi-
cial Intelligence, volume 1, pages 708–714. Citeseer.
Geem, Z. W., Kim, J. H., and Loganathan, G. V. (2001). A
new heuristic optimization algorithm: harmony search.
simulation, 76(2):60–68.
Geleijn, R., van der Meer, M., van der Post, Q., and van den
Berg, D. (2019). The plant propagation algorithm on
timetables: First results. In Evostar 2019 “The Leading
European Event on Bio-Inspired Computation”.
Glover, F. (1989). Tabu search—part i. ORSA Journal on
computing, 1(3):190–206.
Glover, F. (1990). Tabu search—part ii. ORSA Journal on
computing, 2(1):4–32.
Imran, A. M. and Kowsalya, M. (2014). A new power system
reconfiguration scheme for power loss minimization
and voltage profile enhancement using fireworks algo-
rithm. International Journal of Electrical Power &
Energy Systems, 62:312–322.
Ishii, S., Yoshida, W., and Yoshimoto, J. (2002). Control of
exploitation–exploration meta-parameter in reinforce-
ment learning. Neural networks, 15(4-6):665–687.
Keane, A. (1996). The design of a satellite beam with en-
hanced vibration performance using genetic algorithm
techniques. Journal of the Acoustical Society of Amer-
ica, 99(4):2599–2603.
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983).
Optimization by simulated annealing. science,
220(4598):671–680.
Li, J., Zheng, S., and Tan, Y. (2014). Adaptive fireworks
algorithm. In Evolutionary Computation (CEC), 2014
IEEE Congress on, pages 3214–3221. IEEE.
Moshrefi-Torbati, M., Keane, A., Elliott, S., Brennan, M.,
and Rogers, E. (2003). Passive vibration control of a
satellite boom structure by geometric optimization us-
ing genetic algorithm. Journal of Sound and Vibration,
267(4):879–892.
Paauw, M. and van den Berg, D. (2019). Paintings, polygons
and plant propagation. In International Conference on
Computational Intelligence in Music, Sound, Art and
Design (Part of EvoStar), pages 84–97. Springer.
Salhi, A. and Fraga, E. S. (2011). Nature-inspired opti-
misation approaches and the new plant propagation
algorithm.
Selamo
˘
glu, B.
˙
I. and Salhi, A. (2016). The plant propaga-
tion algorithm for discrete optimisation: The case of
the travelling salesman problem. In Nature-inspired
computation in engineering, pages 43–61. Springer.
S
¨
orensen, K. (2015). Metaheuristics—the metaphor exposed.
International Transactions in Operational Research,
22(1):3–18.
Storn, R. and Price, K. (1997). Differential evolution–a
simple and efficient heuristic for global optimization
over continuous spaces. Journal of global optimization,
11(4):341–359.
Sulaiman, M., Salhi, A., and Fraga, E. S. (2014a). The plant
propagation algorithm: modifications and implementa-
tion. arXiv preprint arXiv:1412.4290.
Sulaiman, M., Salhi, A., Selamoglu, B. I., and Kirikchi,
O. B. (2014b). A plant propagation algorithm for con-
strained engineering optimisation problems. Mathe-
matical Problems in Engineering, 2014.
Tan, Y. and Zhu, Y. (2010). Fireworks algorithm for opti-
mization. In International Conference in Swarm Intel-
ligence, pages 355–364. Springer.
Vrielink, W. (2019). FWA versus PPA. https://github.com/
WouterVrielink/FWAPPA.
Weyland, D. (2015). A critical analysis of the harmony
search algorithm-how not to solve sudoku. Operations
Research Perspectives, 2:97–105.
Ygge, F. and Akkermans, J. M. (1996). Power load man-
agement as a computational market. H
¨
ogskolan i Karl-
skrona/Ronneby.
Zheng, S., Janecek, A., Li, J., and Tan, Y. (2014). Dy-
namic search in fireworks algorithm. In Evolutionary
Computation (CEC), 2014 IEEE Congress on, pages
3222–3229. IEEE.
Zheng, S., Janecek, A., and Tan, Y. (2013). Enhanced fire-
works algorithm.
ECTA 2019 - 11th International Conference on Evolutionary Computation Theory and Applications
112