Atanassov, K. T. (2017). Intuitionistic Fuzzy Logics, vol-
ume 351 of Studies in Fuzziness and Soft Computing.
Springer.
Avila, A., Schmalfuss, M., Reiser, R., and Kreinovich, V.
(2015). Fuzzy xor classes from quantum computing.
In International Conference on Artificial Intelligence
and Soft Computing, pages 305–317. Springer.
Bedregal, B., Reiser, R., and Dimuro, G. (2013).
Revising XOR–implications: Classes of fuzzy
(Co)implications based on fuzzy XOR (XNOR) con-
nectives. International Journal of Uncertainty, Fuzzi-
ness and Knowlegde– Based Systems, 14(6):1–29.
Bertini, C. and Leporini, R. (2017). A fuzzy approach to
quantum logical computation. Fuzzy Sets and Sys-
tems, 317:44–60.
Chiara, M. L. D., Giuntini, R., Sergioli, G., and Leporini, R.
(2018). A many-valued approach to quantum compu-
tational logics. Fuzzy Sets and Systems, 335:94–111.
Freytes, H., Giuntini, R., Sergioli, G., and Aricò, A. (2010).
Representing fuzzy structures in quantum computa-
tion with mixed states. In 40th IEEE International
Symposium on Multiple-Valued Logic, ISMVL 2010,
Barcelona, Spain, 26-28 May 2010, pages 162–166.
Hájek, P. (1998). Metamathematics of fuzzy logic, volume 4.
Springer Science & Business Media.
He, X., Li, Y., Qin, K., and Meng, D. (2017). On the char-
acterizations of fuzzy xnor connectives. Journal of
Intelligent and Fuzzy Systems, 32(3):2733–2745.
Imre, S. and Balázs, F. (2005). Quantum Computing and
Communications An Engineering Approach. Johm
Wiley & Sons, Ltd.
Kaye, P., Laflamme, R., and Mosca, M. (2007). An Intro-
duction to Quantum Computing. Oxford University
Press.
Klement, E. P., Mesiar, R., and Pap, E. (2013). Triangu-
lar norms, volume 8. Springer Science & Business
Media.
Kosheleva, O., Reiser, R., and Kreinovich, V. (2015).
Formalizing the informal, precisiating the imprecise:
How fuzzy logic can help mathematicians and physi-
cists by formalizing their intuitive ideas. In Trillas, E.,
Seising, R., and Kacprycz, J., editors, Fuzzy Logic:
Towards the Future, volume 325 of LNCS, pages 301–
321. Springer International Publishing, Netherlands,
2015.
Kreinovich, V., Kohout, L., and Kim, E. (2009). Similarity
between quantum logic and fuzzy logic.
Li, P., Song, K., and Yang, E. (2010). Quantum genetic
algorithm and its application to designing fuzzy neu-
ral controller. In Sixth International Conference on
Natural Computation, ICNC 2010, Yantai, Shandong,
China, 10-12 August 2010, pages 2994–2998.
Mannucci, M. (2006). Quantum fuzzy sets: Blending
fuzzy set theory and quantum computation. CoRR,
abs/cs/0604064.
Nielsen, M. and Chuang, I. (2003). Quantum Computa-
tion and Quantum Information. Cambridge University
Publisher, Cambridge.
Perkowski, M. A., Chrzanowska-Jeske, M., Mishchenko,
A., Song, X., Al-Rabadi, A., Massey, B., Kerntopf,
P., Buller, A., Józwiak, L., and Coppola, A. J. (2001).
Regular realization of symmetric functions using re-
versible logic. In Euromicro Symposium on Digital
Systems Design 2001 (Euro-DSD 2001), 4-6 Septem-
ber 2001, Warsaw, Poland, pages 245–253.
Pykacz, J. (1993). Fuzzy quantum logic i. International
Journal of Theoretical Physics, 32:1691–1708.
Raghuvanshi, A. and Perkowski, M. A. (2010). Fuzzy
quantum circuits to model emotional behaviors of hu-
manoid robots. In Proceedings of the IEEE Congress
on Evolutionary Computation, CEC 2010, Barcelona,
Spain, 18-23 July 2010, pages 1–8.
Reiser, R., Lemke, A., de Avila, A. B., Vieira, J., Pilla,
M. L., and Bois, A. R. D. (2016). Interpretations on
quantum fuzzy computing: Intuitionistic fuzzy opera-
tions ×quantum operators. Electr. Notes Theor. Com-
put. Sci, 324:135–150.
Rigatos, G. G. and Tzafestas, S. G. (2002). Parallelization
of a fuzzy control algorithm using quantum computa-
tion. IEEE Trans. Fuzzy Systems, 10(4):451–460.
Sriboonchitta, S., Nguyen, H. T., Kosheleva, O.,
Kreinovich, V., and Nguyen, T. N. (2019). Quantum
approach explains the need for expert knowledge: On
the example of econometrics. In Structural Changes
and their Econometric Modeling, pages 191–199.
Interpreting Xor Intuitionistic Fuzzy Connectives from Quantum Fuzzy Computing
295