Jurafsky, D., Martin, J.H., 2017. Speech and Language
Processing. An Introduction to Natural Language
Processing, Computational Linguistics, and Speech
Recognition. 3
rd
edition, University of Colorado at
Boulder, 2017, 1-499.
Kao, A., Poteet, S., 2005. Text Mining and Natural
Language Processing. ACM Exploration Newsletter,
Vol 7, No 1(2005), ACM Digital Library, 1-2.
Kumar, S., West, R., Leskovec, J., 2016. Disinformation on
the Web. In Proc. of the 25
th
International on Word
Wide Web – WWW16, Association for Computing
Machinery (ACM), 2016, 591-602.
Labille, K., Gauch, S., Alfarhood, S., 2017. Creating
Domain-specific Sentiment Lexicons via Text Mining.
In Proc. of WISDOM’2017, Halifax, Canada,
Association for Computing Machinery, 2017, 1-8.
Lévy, P., 1997. Collective intelligence: Mankind’s
Emerging World in Cyberspace. Perseus Books
Cambridge, Massachusetts, 1997, 1-277, ISBN 0-7382-
0261-4.
Machová, K., Mikula, M., Szabóová, M., Mach, M., 2018.
Sentiment and Authority Analysis in Conversational
Content. Computing and Informatics, Vol.37,
No.3(2018), 737-758, ISSN 1335-9150, IF 0,410.
Malone, T.W., 2006. What is collective intelligence and
what we will do about it? Collective intelligence:
creating a prosperous world at peace. MIT centre for
Collective Intelligence, 2006, 1-610.
Mikula, M., Machová, K., 2018. Combined Approach for
Sentiment Analysis in Slovak Using a Dictionary
Annotated by Particle Swarm Optimization. Acta
Elektrotechnica et Informatica, Vol.18, No.2(2018),
ISSN 1335-8243, 27-34.
Mikula, M., Machová, K., 2017. Annotation of the
Dictionary for Sentiment Analysis Using PSO. In Proc.
of Data and Knowledge, Plzeň, 2017, 151-156.
Mohammad, S., Salameh, M., Kiritchenko, S., 2016.
Sentiment Lexicons for Arabic Social Media. In. Proc.
of the Tenth International Conference on Language
Resources and Evaluation, Portorož, Slovenia, LREC,
2016, 33-37.
Nielsen, F.A., 211. A new ANEW: Evaluation of a Word
List for Sentiment Analysis in Microblogs. In Proc. of
the ESWC2011 Workshop on 'Making Sense of
Microposts': Big things come in small packages, 2011,
93-98.
Paralič, J., Furdík, K., Tutoky, G., Bednár, P., Sarnovský,
M., Butka, P., Babič, F., 2010. Mining of knowledge
from texts,” Košice: Equilibria, 2010.
Řimnáč, M., 2018. Detection of a Disinnformation Content
– Case Study Novičok in CR. In Proc. of the
Conference Data a znalosti & WIKT 2018, 11.-
12.10.2018, Brno, VUT, 2018, 65-69.
Surowiecki, K., 2004. The Wisdom of Crowds - Why the
many are smarter than the few. Abacus, Doubleday,
2004, 1-6.
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M,
2011. Lexicon-Based Methods for Sentiment Analysis.
Computational Linguistics, Vol.37, No.2(2011), 267-
307.
Tarnowska, K., Ras, Z.W., Daniel, L., 2019. Recommender
System for Improving Customer Loyalty. Studies in Big
Data, Vol. 55, Springer, 2019.
Thelwall, M., 2005. Webometrics. Encyclopaedia of
Library and Information Science, Vol.1, No.1(2005),
Taylor and Francis Group, 1-8.
Wang, S.E., Garcia-Molina, H., 2013. Disinformation
Techniques for Entity resolution. In Proc. of the 22
nd
ACM International Comnference on Information and
Knowledge Management, New York, USA, 2013, 715-
720.
Sentiment Analysis of Web Trends for the Antisocial Behaviour Detection
457