Table 4: Supervised ARN results on MNIST using updates for both the encoder and class discriminator.
Algorithm LS 5 LS 10 LS 20
Adversarial Autoencoder (Makhzani et al., 2015) 42.9 61.8 57.5
Variational Autoencoder (Kingma and Welling, 2013) 61.9 66.2 69.1
ARN 59.0 68.4 73.5
Table 5: Supervised ARN results on MNIST using only class discriminator updates.
Algorithm LS 10
Adversarial Autoencoder (Makhzani et al., 2015) 57.2
Variational Autoencoder (Kingma and Welling, 2013) 68.0
ARN 73.5
and provides even better latent space generalization
amongst encoder-based methodologies. It is envis-
aged that the ARN can be effectively used in applica-
tions such as detection, classification, activity recog-
nition, and machine translation with less labeled data.
With the flexibility of the ARN architecture with
the shared latent space, it has natural extensions to
different applications. Different loss functions can be
used, like Wasserstein distance loss, to optimize the
learning capabilities of the ARN. For active learning,
the network should be updated using new labeled data
through different real data and even generated data.
For domain adaptation, the network can be adversar-
ially regularized using the discriminators and be pro-
cessed using CycleGAN concepts. For lifelong learn-
ing, elastic weight consolidation (EWC) and gener-
ative memory replay can be used to incrementally
learn new information. Finally for multitask learning,
the shared latent space allows common sense between
tasks to optimize all.
REFERENCES
Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasser-
stein GAN.
Badrinarayanan, V., Kendall, A., and Cipolla, R. (2015).
SegNet: A Deep Convolutional Encoder-Decoder Ar-
chitecture for Image Segmentation. arXiv:1511.00561
[cs]. arXiv: 1511.00561.
Bengio, Y., Lamblin, P., Popovici, D., and Larochelle,
H. Greedy Layer-Wise Training of Deep Networks.
page 8.
Berthelot, D., Schumm, T., and Metz, L. (2017). BE-
GAN: Boundary Equilibrium Generative Adversarial
Networks.
Bihan, D. L., Turner, R., Zeffiro, T. A., Cu
´
enod, C. A., Jez-
zard, P., and Bonnerot, V. (1993). Activation of human
primary visual cortex during visual recall: a magnetic
resonance imaging study. Proceedings of the National
Academy of Sciences, 90(24):11802–11805.
Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
I., and Abbeel, P. (2016). InfoGAN: Interpretable
Representation Learning by Information Maximizing
Generative Adversarial Nets. arXiv:1606.03657 [cs,
stat]. arXiv: 1606.03657.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09.
Donahue, J., Kr
¨
ahenb
¨
uhl, P., and Darrell, T. (2016). Adver-
sarial Feature Learning. arXiv:1605.09782 [cs, stat].
arXiv: 1605.09782.
Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O.,
Lamb, A., Arjovsky, M., and Courville, A. (2016).
Adversarially Learned Inference.
Fisher, R. A. (1936). The Use of Multiple Measurements in
Taxonomic Problems. Annals of Eugenics, 7(2):179–
188.
F.R.S, K. P. (1901). LIII. On lines and planes of closest fit to
systems of points in space. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of
Science, 2(11):559–572.
Gobet, F. and Simon, H. A. (1998). Expert Chess Mem-
ory: Revisiting the Chunking Hypothesis. Memory,
6(3):225–255.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative Adversarial Nets. In
Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N. D., and Weinberger, K. Q., editors, Advances
in Neural Information Processing Systems 27, pages
2672–2680. Curran Associates, Inc.
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B.,
and Hochreiter, S. (2017). GANs Trained by a Two
Time-Scale Update Rule Converge to a Local Nash
Equilibrium. arXiv:1706.08500 [cs, stat]. arXiv:
1706.08500.
Hou, X., Shen, L., Sun, K., and Qiu, G. (2016). Deep Fea-
ture Consistent Variational Autoencoder.
Jolicoeur-Martineau, A. (2018). The relativistic discrim-
inator: a key element missing from standard GAN.
arXiv:1807.00734 [cs, stat]. arXiv: 1807.00734.
Karpicke, J. D. and Blunt, J. R. (2011). Retrieval Prac-
tice Produces More Learning than Elaborative Study-
ing with Concept Mapping. Science, 331(6018):772–
775.
Karpicke, J. D. and Roediger, H. L. (2008). The Criti-
cal Importance of Retrieval for Learning. Science,
319(5865):966–968.
Kingma, D. P. and Welling, M. (2013). Auto-Encoding
Variational Bayes.
NCTA 2019 - 11th International Conference on Neural Computation Theory and Applications
442