work for large-span language modeling. In EU-
ROSPEECH.
Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent
dirichlet allocation. the Journal of machine Learning
research, 3:993–1022.
Bougiatiotis, K. and Giannakopoulos, T. (2016). Content
representation and similarity of movies based on topic
extraction from subtitles. In Proceedings of the 9th
Hellenic Conference on Artificial Intelligence, pages
1–7. ACM.
Chabi, A. H., Kboubi, F., and Ahmed, M. B. (2011). The-
matic analysis and visualization of textual corpus.
arXiv preprint arXiv:1112.2071, 2:1–16.
Cheng, C.-H. and Hung, W.-L. (2018). Tea in benefits of
health: A literature analysis using text mining and la-
tent dirichlet allocation. In Proceedings of the 2nd
International Conference on Medical and Health In-
formatics, pages 148–155. ACM.
Dascalu, M., Dessus, P., Trausan-Matu, s., Bianco, M., and
Nardy, A. (2013). Readerbench, an environment for
analyzing text complexity and reading strategies. In
Artificial Intelligence in Education, pages 379–388.
Springer.
Fourati, M., Chaari, A., Jedidi, A., and Gargouri, F. (2015a).
A semiotic semi-automatic annotation for movie au-
diovisual document. In 15th International Confer-
ence on Intelligent Systems Design and Applications
(ISDA) 2015, pages 533–539. IEEE.
Fourati, M., Jedidi, A., and Gargouri, F. (2014). Automatic
audiovisual documents genre description. In 6th Inter-
national joint conference on knowledge discovery and
informationretrieval (KDIR 2014), Rome, Italy, pages
21–24.
Fourati, M., Jedidi, A., Hassin, H. B., and Gargouri, F.
(2015b). Towards fusion of textual and visual modal-
ities for describing audiovisual documents. Interna-
tional Journal of Multimedia Data Engineering and
Management (IJMDEM), 6(2):52–70.
Harispe, S., Senchez, D., Ranwez, S., Janaqi, S., and Mont-
main, J. (2014). A framework for unifying ontology-
based semantic similarity measures: A study in the
biomedical domain. Journal of biomedical informat-
ics, 48:38–53.
He, Y., Li, Y., Lei, J., and Leung, C. (2016). A framework of
query expansion for image retrieval based on knowl-
edge base and concept similarity. Neurocomputing,
-:Inpress.
Hofmann, T. (1999). Probabilistic latent semantic index-
ing. In Proceedings of the 22nd annual international
ACM SIGIR conference on Research and development
in information retrieval, pages 50–57. ACM.
Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y.,
and Zhao, L. (2019). Latent dirichlet allocation (lda)
and topic modeling: models, applications, a survey.
Multimedia Tools and Applications, 78(11):15169–
15211.
Kurzhals, K., John, M., Heimerl, F., Kuznecov, P., and
Weiskopf, D. (2016). Visual movie analytics. IEEE
Transactions on Multimedia, 18(11):2149–2160.
Martin, J. P. (2005). Description semiotique de contenus
audiovisuels. PhD thesis, Paris 11.
Mocanu, B., Tapu, R., and Tapu, E. (2016). Video retrieval
using relevant topics extraction from movie subtitles.
In 12th IEEE International Symposium on Electronics
and Telecommunications (ISETC), 2016, pages 327–
330. IEEE.
Rahangdale, A. and Agrawal, A. (2014). Information ex-
traction using discourse analysis from newswires. In-
ternational Journal of Information Technology Con-
vergence and Services, 4(3):21.
Sanchez-Nielsen, E., Chavez-Gutierrez, F., and Lorenzo-
Navarro, J. (2019). A semantic parliamentary mul-
timedia approach for retrieval of video clips with con-
tent understanding. Multimedia Systems, pages 1–18.
Stockinger, P. (2003). Le document audiovisuel: procedures
de description et exploitation. Hermes.
Stockinger, P. (2011). Les archives audiovisuelles: descrip-
tion, indexation et publication. Lavoisier.
Stockinger, P. (2013). Audiovisual Archives: Digital Text
and Discourse Analysis. John Wiley Sons.
Tang, P., Wang, C., Wang, X., Liu, W., Zeng, W., and Wang,
J. (2019). Object detection in videos by high quality
object linking. IEEE transactions on pattern analysis
and machine intelligence.
Tapu, R. and Zaharia, T. (2011). High level video temporal
segmentation. In International Symposium on Visual
Computing, pages 224–235. Springer.
KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development
214