4 CONCLUSIONS
The summary of the study are:
The detection of an object requires period of
around 300 ms with more than 90% accuracy.
The measurement of an object using 3D
camera has an error with the number of
maximum of 3%.
Braking action is taken by giving value as the
intensity shows that the electric signal is
higher when object distance is closer than 5
m.
ACKNOWLEDGEMENTS
The writers would like to thanks the Penelitian
Unggulan Program Studi (PUPS) Program for
financing the research work.
REFERENCES
Bellomo, N., Marcuzzi, E., Baglivo, L., Pertile, M.,
Bertolazzi, E., & De Cecco, M. (2009). Pallet Pose
Estimation with LIDAR and Vision for Autonomous
Forklifts. IFAC Proceedings Volumes, 42(4), 612-617.
doi: https://doi.org/10.3182/20090603-3-RU-
2001.0540
Boldt, J. L., Williams, K., Rooper, C. N., Towler, R. H., &
Gauthier, S. (2018). Development of stereo camera
methodologies to improve pelagic fish biomass
estimates and inform ecosystem management in
marine waters. Fisheries Research, 198, 66-77. doi:
https://doi.org/10.1016/j.fishres.2017.10.013
California. (2018). Forklift Accident Statistics. safety
numbers in ca.
Chi, Y., Yu, L., & Pan, B. (2018). Low-cost, portable,
robust and high-resolution single-camera stereo-DIC
system and its application in high-temperature
deformation measurements. Optics and Lasers in
Engineering, 104, 141-148. doi:
https://doi.org/10.1016/j.optlaseng.2017.09.020
Fleming, J. M., Allison, C. K., Yan, X., Lot, R., &
Stanton, N. A. (2019). Adaptive driver modelling in
ADAS to improve user acceptance: A study using
naturalistic data. Safety Science, 119, 76-83. doi:
https://doi.org/10.1016/j.ssci.2018.08.023
García, F., Prioletti, A., Cerri, P., & Broggi, A. (2018).
PHD filter for vehicle tracking based on a monocular
camera. Expert Systems with Applications, 91, 472-
479. doi: https://doi.org/10.1016/j.eswa.2017.09.018
Hu, Z., Lamosa, F., & Uchimura, K. (2005). A Compete
U-V-Disparity Study for Stereovision Based 3D
Driving Environment Analysis. Paper presented at the
The fifth International Conference on 3-D Digital
Imaging and Modeling.
Huang, N., He, J., Zhu, N., Xuan, X., Liu, G., & Chang, C.
(2018). Identification of the source camera of images
based on convolutional neural network. Digital
Investigation, 26, 72-80. doi:
https://doi.org/10.1016/j.diin.2018.08.001
Industries, C. (2019). 6 Common Forklift Accidents and
How to Prevent Them Retrieved Aug 19, 2019
Irawan, A., Yaacob, M. A., Azman, F. A., Daud, M. R.,
Razali, A. R., & Ali, S. N. S. (2018, 27-28 Aug.
2018). Vision-based Alignment Control for Mini
Forklift System in Confine Area Operation. Paper
presented at the 2018 International Symposium on
Agent, Multi-Agent Systems and Robotics (ISAMSR).
Jalali, A., Mallipeddi, R., & Lee, M. (2017). Sensitive
deep convolutional neural network for face recognition
at large standoffs with small dataset. Expert Systems
with Applications, 87, 304-315. doi:
https://doi.org/10.1016/j.eswa.2017.06.025
Murmu, N., Chakraborty, B., & Nandi, D. (2019). Relative
velocity measurement using low cost single camera-
based stereo vision system. Measurement, 141, 1-11.
doi:
https://doi.org/10.1016/j.measurement.2019.04.006
Nguyen, B., & Brilakis, I. (2018). Real-time validation of
vision-based over-height vehicle detection system.
Advanced Engineering Informatics, 38, 67-80. doi:
https://doi.org/10.1016/j.aei.2018.06.002
Oh, J., Kuenze, C., Jacopetti, M., Signorile, J. F., &
Eltoukhy, M. (2018). Validity of the Microsoft
Kinect™ in assessing spatiotemporal and lower
extremity kinematics during stair ascent and descent in
healthy young individuals. Medical Engineering &
Physics, 60, 70-76. doi:
https://doi.org/10.1016/j.medengphy.2018.07.011
Seelinger, M., & Yoder, J.-D. (2006). Automatic visual
guidance of a forklift engaging a pallet. Robotics and
Autonomous Systems, 54(12), 1026-1038. doi:
https://doi.org/10.1016/j.robot.2005.10.009
Williams, K., Rooper, C. N., De Robertis, A., Levine, M.,
& Towler, R. (2018). A method for computing
volumetric fish density using stereo cameras. Journal
of Experimental Marine Biology and Ecology, 508,
21-26. doi:
https://doi.org/10.1016/j.jembe.2018.08.001
Xu, M., Zhai, Y., Guo, Y., Lv, P., Li, Y., Wang, M., &
Zhou, B. (2019). Personalized training through Kinect-
based games for physical education. Journal of Visual
Communication and Image Representation, 62, 394-
401. doi: https://doi.org/10.1016/j.jvcir.2019.05.007