Table 3: Aggregated results for the scpe and scpclr classes
(averaged durations and approximation ratios ±σ).
scpe duration approx. ratio
CRO 3.9 ± 1.0 1.66 ± 0.0
GA 13.0 ± 17.2 1.19 ± 0.25
GCAIS 18.8 ± 36.9 1.03 ± 0.1
GSEMO 24.4 ± 22.9 1.09 ± 0.19
JPSO 3564.6 ± 64.5 1.31 ± 0.33
SA 52.0 ± 64.3 1.09 ± 0.18
SEIP 11.0 ± 29.6 1.38 ± 0.62
scpclr duration approx. ratio
CRO 5.6 ± 2.3 1.02 ± 0.16
GA 99.2 ± 97.4 1.0 ± 0.0
GCAIS 508.1 ± 375.3 1.0 ± 0.0
GSEMO 98.1 ± 98.9 1.31 ± 0.58
JPSO 3581.5 ± 29.2 1.38 ± 0.87
SA 809.8 ± 1065.6 34.82 ± 5.13
SEIP 12.0 ± 19.9 2.91 ± 2.29
REFERENCES
Alon, N., Moshkovitz, D., and Safra, S. (2006). Algo-
rithmic Construction of Sets for K-restrictions. ACM
Trans. Algorithms, 2(2):153–177.
Balaji, S. and Revathi, N. (2016). A New Approach for
Solving Set Covering Problem Using Jumping Particle
Swarm Optimization Method. 15(3):503–517.
Beasley, J. and Chu, P. (1996). ”A Genetic Algorithm for
the Set Covering Problem”. European Journal of Op-
erational Research, 94(2):392 – 404.
Cormode, G., Karloff, H., and Wirth, A. (2010). Set Cover
Algorithms for Very Large Datasets. In Proceed-
ings of the 19th ACM International Conference on In-
formation and Knowledge Management, CIKM ’10,
pages 479–488, New York, NY, USA. ACM.
Dinur, I. and Steurer, D. (2014). Analytical Approach
to Parallel Repetition. In Proceedings of the Forty-
sixth Annual ACM Symposium on Theory of Comput-
ing, STOC ’14, pages 624–633, New York, NY, USA.
ACM.
Fulkerson, D., Nemhauser, G., and Trotter, L. (2009). Two
Computationally Difficult Set Covering Problems that
arise in Computing the 1-width of Incidence Matrices
of Steiner Triple Systems, volume 2, pages 72–81.
Giel, O. and Wegener, I. (2003). Evolutionary Algorithms
and the Maximum Matching Problem. In Proceedings
of the 20th Annual Symposium on Theoretical Aspects
of Computer Science, STACS ’03, page 415–426,
Berlin, Heidelberg. Springer-Verlag.
Gotlieb, A. and Marijan, D. (2014). FLOWER: Optimal
Test Suite Reduction As a Network Maximum Flow.
In Proceedings of the 2014 International Symposium
on Software Testing and Analysis, ISSTA 2014, pages
171–180, New York, NY, USA. ACM.
Holland, J. H. (1992). Genetic Algorithms. Scientific Amer-
ican, 267(1):66–73.
Joshi, A., Rowe, J. E., and Zarges, C. (2014). ”An Immune-
Inspired Algorithm for the Set Cover Problem”. In
Bartz-Beielstein, T., Branke, J., Filipi
ˇ
c, B., and Smith,
J., editors, Parallel Problem Solving from Nature –
PPSN XIII, pages 243–251, Cham. Springer Interna-
tional Publishing.
Jungnickel, D. (2007). Graphs, Networks and Algorithms.
Springer Publishing Company, Incorporated, 3rd edi-
tion.
Karp, R. (1972). Reducibility Among Combinatorial Prob-
lems. volume 40, pages 85–103.
Kruse, R., Borgelt, C., Braune, C., Klawonn, F., Moewes,
C., and Steinbrecher, M. (2015). Computational In-
telligence Eine methodische Einf
¨
uhrung in K
¨
unstliche
Neuronale Netze, Evolution
¨
are Algorithmen, Fuzzy-
Systeme und Bayes-Netze. Computational Intelli-
gence. Springer Vieweg, Wiesbaden, 2 edition.
Lam, A. and Li, V. (2012). Chemical Reaction Optimiza-
tion: A tutorial. Memetic Computing, 4.
Mannino, C. and Sassano, A. (1995). ”Solving Hard Set
Covering Problems”. Operations Research Letters,
18(1):1 – 5.
Minotra, D. (2008). A Study of Heuristic-Algorithms for
Set-Covering Problems.
Rosenbauer, L., Stein, A., and H
¨
ahner, J. (2020). A Ger-
minal Centre Artificial Immune System for Software
Test Suite Reduction. Artificial Life.
Stegherr, H., Stein, A., and Haehner, J. (2019). Parallel
Chemical Reaction Optimisation for the Utilisation in
Intelligent RNA Prediction Systems. In ARCS Work-
shop 2019; 32nd International Conference on Archi-
tecture of Computing Systems, pages 1–8.
Wen-Chih Huang, Cheng-Yan Kao, and Jorng-Tzong Horng
(1994). A Genetic Algorithm Approach for Set Cover-
ing Problems. In Proceedings of the First IEEE Con-
ference on Evolutionary Computation. IEEE World
Congress on Computational Intelligence, pages 569–
574 vol.2.
Williamson, D. and Shmoys, D. (2011). The Design of Ap-
proximation Algorithms. The Design of Approxima-
tion Algorithms.
Yu, J. J. Q., Lam, A. Y. S., and Li, V. O. K. (2014). Chemical
Reaction Optimization for the Set Covering Problem.
In 2014 IEEE Congress on Evolutionary Computation
(CEC), pages 512–519.
Yu, Y., Yao, X., and Zhou, Z.-H. (2010). On the Approxima-
tion Ability of Evolutionary Optimization with Appli-
cation to Minimum Set Cover. Artificial Intelligence,
s 180–181.
ECTA 2020 - 12th International Conference on Evolutionary Computation Theory and Applications
130