154–159. IEEE.
Fan, S.-K. S. and Chiu, Y.-Y. (2007). A decreasing inertia
weight particle swarm optimizer. Engineering Opti-
mization, 39(2):203–228.
Faris, H., Ala’M, A.-Z., Heidari, A. A., Aljarah, I., Mafarja,
M., Hassonah, M. A., and Fujita, H. (2019). An intel-
ligent system for spam detection and identification of
the most relevant features based on evolutionary ran-
dom weight networks. Information Fusion, 48:67–83.
Gao, Y.-l., An, X.-h., and Liu, J.-m. (2008). A parti-
cle swarm optimization algorithm with logarithm de-
creasing inertia weight and chaos mutation. In 2008
International Conference on Computational Intelli-
gence and Security, volume 1, pages 61–65. IEEE.
Hassanien, A. E., Gaber, T., Mokhtar, U., and Hefny, H.
(2017). An improved moth flame optimization al-
gorithm based on rough sets for tomato diseases de-
tection. Computers and Electronics in Agriculture,
136:86–96.
Inbarani, H. H., Azar, A. T., and Jothi, G. (2014). Super-
vised hybrid feature selection based on pso and rough
sets for medical diagnosis. Computer methods and
programs in biomedicine, 113(1):175–185.
Kennedy, J. and Eberhart, R. C. (1997). A discrete binary
version of the particle swarm algorithm. In Systems,
Man, and Cybernetics, 1997. Computational Cyber-
netics and Simulation., 1997 IEEE International Con-
ference on, volume 5, pages 4104–4108. IEEE.
Kentzoglanakis, K. and Poole, M. (2009). Particle swarm
optimization with an oscillating inertia weight. In Pro-
ceedings of the 11th Annual conference on Genetic
and evolutionary computation, pages 1749–1750.
Khurma., R. A., Aljarah., I., and Sharieh., A. (2020).
An efficient moth flame optimization algorithm us-
ing chaotic maps for feature selection in the medical
applications. In Proceedings of the 9th International
Conference on Pattern Recognition Applications and
Methods - Volume 1: ICPRAM,, pages 175–182. IN-
STICC, SciTePress.
Khurma, R. A., Aljarah, I., Sharieh, A., and Mirjalili, S.
(2020). Evolopy-fs: An open-source nature-inspired
optimization framework in python for feature selec-
tion. In Evolutionary Machine Learning Techniques,
pages 131–173. Springer.
Khushaba, R. N., Al-Ani, A., and Al-Jumaily, A. (2011).
Feature subset selection using differential evolution
and a statistical repair mechanism. Expert Systems
with Applications, 38(9):11515–11526.
Mafarja, M., Aljarah, I., Heidari, A. A., Hammouri, A. I.,
Faris, H., Ala
´
M, A.-Z., and Mirjalili, S. (2018). Evo-
lutionary population dynamics and grasshopper opti-
mization approaches for feature selection problems.
Knowledge-Based Systems, 145:25–45.
Mafarja, M., Qasem, A., Heidari, A. A., Aljarah, I., Faris,
H., and Mirjalili, S. (2020). Efficient hybrid nature-
inspired binary optimizers for feature selection. Cog-
nitive Computation, 12(1):150–175.
Mafarja, M. M., Eleyan, D., Jaber, I., Hammouri, A., and
Mirjalili, S. (2017). Binary dragonfly algorithm for
feature selection. In New Trends in Computing Sci-
ences (ICTCS), 2017 International Conference on,
pages 12–17. IEEE.
Medjahed, S. A., Saadi, T. A., Benyettou, A., and Ouali, M.
(2016). Gray wolf optimizer for hyperspectral band
selection. Applied Soft Computing, 40:178–186.
Mehne, S. H. H. and Mirjalili, S. (2020). Moth-flame op-
timization algorithm: theory, literature review, and
application in optimal nonlinear feedback control de-
sign. In Nature-Inspired Optimizers, pages 143–166.
Springer.
Mirjalili, S. (2015). Moth-flame optimization algorithm: A
novel nature-inspired heuristic paradigm. Knowledge-
Based Systems, 89:228–249.
Mirjalili, S. and Lewis, A. (2013). S-shaped versus v-
shaped transfer functions for binary particle swarm
optimization. Swarm and Evolutionary Computation,
9:1–14.
Mistry, K., Zhang, L., Neoh, S. C., Lim, C. P., and Fielding,
B. (2017). A micro-ga embedded pso feature selec-
tion approach to intelligent facial emotion recognition.
IEEE transactions on cybernetics, 47(6):1496–1509.
Nakamura, R. Y., Pereira, L. A., Costa, K., Rodrigues, D.,
Papa, J. P., and Yang, X.-S. (2012). Bba: a binary
bat algorithm for feature selection. In 2012 25th SIB-
GRAPI conference on graphics, Patterns and Images,
pages 291–297. IEEE.
Oliveira, A. L., Braga, P. L., Lima, R. M., and Corn
´
elio,
M. L. (2010). Ga-based method for feature selection
and parameters optimization for machine learning re-
gression applied to software effort estimation. infor-
mation and Software Technology, 52(11):1155–1166.
Reddy, S., Panwar, L. K., Panigrahi, B. K., and Kumar, R.
(2018). Solution to unit commitment in power sys-
tem operation planning using binary coded modified
moth flame optimization algorithm (bmmfoa): a flame
selection based computational technique. Journal of
Computational Science, 25:298–317.
Rodrigues, D., Pereira, L. A., Almeida, T., Papa, J. P.,
Souza, A., Ramos, C. C., and Yang, X.-S. (2013).
Bcs: A binary cuckoo search algorithm for feature se-
lection. In Circuits and Systems (ISCAS), 2013 IEEE
International Symposium on, pages 465–468. IEEE.
Sayed, G. I. and Hassanien, A. E. (2018). A hybrid sa-
mfo algorithm for function optimization and engineer-
ing design problems. Complex & Intelligent Systems,
pages 1–18.
Sayed, G. I., Hassanien, A. E., Nassef, T. M., and Pan,
J.-S. (2016). Alzheimer
´
s disease diagnosis based on
moth flame optimization. In International Conference
on Genetic and Evolutionary Computing, pages 298–
305. Springer.
Shehab, M., Abualigah, L., Al Hamad, H., Alabool, H., Al-
shinwan, M., and Khasawneh, A. M. (2019). Moth–
flame optimization algorithm: variants and applica-
tions. Neural Computing and Applications, pages 1–
26.
Shi, Y. and Eberhart, R. C. (1999). Empirical study of parti-
cle swarm optimization. In Proceedings of the 1999
ECTA 2020 - 12th International Conference on Evolutionary Computation Theory and Applications
26