B
ˇ
ehounek, L. and Nov
´
ak, V. (2015). Towards fuzzy partial
logic. In Proceedings of the IEEE 45th International
Symposium on Multiple-Valued Logics (ISMVL 2015),
pages 139–144. IEEE.
Casillas, J., Cord
´
on, O., Triguero, F., and Magdalena, L.
(2013). Interpretability Issues in Fuzzy Modeling.
Studies in Fuzziness and Soft Computing. Springer
Berlin Heidelberg.
Ciucci, D. and Dubois, D. (2013). A map of dependen-
cies among three-valued logics. Information Sciences,
250:162–177.
d’Allonnes, A. R. and Lesot, M. (2017). If I don’t know,
should I infer? reasoning around ignorance in a many-
valued framework. In Joint 17th World Congress of
International Fuzzy Systems Association and 9th In-
ternational Conference on Soft Computing and Intel-
ligent Systems, IFSA-SCIS 2017, Otsu, Japan, June
27-30, 2017, pages 1–6. IEEE.
Da
ˇ
nkov
´
a, M. (2018). A graded notion of functionality.
Fuzzy Sets and Systems, 339(15 May 2018):134 – 151.
Delgado, M. R., Zuben, F. V., and Gomide, F. (2003).
Hierarchical Genetic Fuzzy Systems: Accuracy, In-
terpretability and Design Autonomy, pages 379–405.
Springer Berlin Heidelberg, Berlin, Heidelberg.
Demirci, M. (2001). Gradation of being fuzzy function.
Fuzzy Sets and Systems, 119(3):383 – 392.
Fletcher, S., Verma, B., and Zhang, M. (2020). A non-
specialized ensemble classifier using multi-objective
optimization. Neurocomputing, 409:93 – 102.
H
´
ajek, P. (1998). Metamathematics of Fuzzy Logic, vol-
ume 4 of Trends in Logic. Kluwer, Dordercht.
K
´
oczy, L. T., Muresan, L., Cs
´
anyi, K., and Hirota, K.
(2003). Interpolation in hierarchical rule bases. In
Rutkowski, L. and Kacprzyk, J., editors, Neural Net-
works and Soft Computing, pages 48–53, Heidelberg.
Physica-Verlag HD.
Latkowski, R. and Mikołajczyk, M. (2004). Data decom-
position and decision rule joining for classification of
data with missing values. In Peters, J. F., Skowron, A.,
Grzymała-Busse, J. W., Kostek, B.,
´
Swiniarski, R. W.,
and Szczuka, M. S., editors, Transactions on Rough
Sets I, pages 299–320, Berlin, Heidelberg. Springer
Berlin Heidelberg.
Lughofer, E. (2011). Evolving Fuzzy Systems - Methodolo-
gies, Advanced Concepts and Applications. Studies in
Fuzziness and Soft Computing. Springer Berlin Hei-
delberg.
Magdalena, L. (2019). Semantic interpretability in hierar-
chical fuzzy systems: Creating semantically decou-
plable hierarchies. Information Sciences, 496:109 –
123.
Mamdani, E. H. and Assilian, S. (1975). An experiment
in linguistic synthesis with a fuzzy logic controller.
International Journal of Man–Machine Studies, 7:1–
13.
Nolasco, D. H., Palmeira, E. S., and Costa, F. B. (2019).
A cascade-type hierarchical fuzzy system with ad-
ditional defuzzification of layers for the automatic
power quality diagnosis. Applied Soft Computing,
80:657 – 671.
Peters, J., Skowron, A., Grzymala-Busse, J., Kostek, B.,
Swiniarski, R., and Szczuka, M. (2004). Transactions
on Rough Sets I. Lecture Notes in Computer Science.
Springer.
Scherer, R. (2012). Multiple Fuzzy Classification Systems.
Studies in Fuzziness and Soft Computing. Springer
Berlin Heidelberg.
ˇ
St
ˇ
epni
ˇ
cka, M. and Cao, T. H. N. (2018). Compositions
of partial fuzzy relations. In Medina, J. et al., edi-
tors, IPMU 2018, volume 855 of Communications in
Computer and Information Science, pages 187–198,
Cham. Springer.
ˇ
St
ˇ
epni
ˇ
cka, M., Burda, M., and
ˇ
St
ˇ
epni
ˇ
ckov
´
a, L. (2016).
Fuzzy rule base ensemble generated from data by lin-
guistic associations mining. Fuzzy Sets and Systems,
285:140 – 161. Special Issue on Linguistic Descrip-
tion of Time Series.
Valverde, L. (1985). On the structure of F-indistinguisha-
bility operators. Fuzzy Sets and Systems, 17(3):313–
328.
ˇ
St
ˇ
epni
ˇ
cka, M., Cao, N., B
ˇ
ehounek, L., Burda, M., and
Doln
´
y, A. (2019). Missing values and dragonfly oper-
ations in fuzzy relational compositions. International
Journal of Approximate Reasoning, 113:149 – 170.
Merging Partial Fuzzy Rule-bases
251