PhySci within the Open Research Knowledge Graph
(ORKG)
13
to facilitate the discoverability of physics-
related publications. Besides, the precision and recall
of the PhySci ontology will be improved by cover-
ing more topics and sub-topics related to physics re-
search such as electricity and magnetism, or mechan-
ics in the future. Furthermore, we will extend this
work for other scientific disciplines and envision a
science knowledge graph covering various scientific
fields (e.g., life science, earth science) for scholarly
publishing.
ACKNOWLEDGEMENTS
This work has been supported by ERC project Sci-
enceGRAPH (grant no. 819536).
REFERENCES
Abbott, B. P., Abbott, R., Abbott, T., Abernathy, M., Ac-
ernese, F., Ackley, K., Adams, C., Adams, T., Ad-
desso, P., Adhikari, R., et al. (2016). Gw150914: Im-
plications for the stochastic gravitational-wave back-
ground from binary black holes. Physical review let-
ters, 116(13):131102.
Albuquerque, A. C. F., Dos Santos, J. L. C., and de Cas-
tro J
´
unior, A. N. (2016). Ontobio: Designing new
features to improve modeling and implementation. In
ONTOBRAS, pages 169–174.
Buttigieg, P. L., Morrison, N., Smith, B., Mungall, C. J.,
Lewis, S. E., Consortium, E., et al. (2013). The en-
vironment ontology: contextualising biological and
biomedical entities. Journal of biomedical semantics,
4(1):43.
Cambr
´
esy, L., Derriere, S., Padovani, P., Preite Mar-
tinez, A., and Richard, A. (2010). Ontology of
astronomical object types. International Virtual
Observatory Alliance. Available at: http://www. ivoa.
net/Documents/Notes/AstrObjectOntology/20100117/
NOTE-AstrObjectOntology-1.3-20100117. html.
Accessed on, 11(06):2011.
Compton, M., Barnaghi, P., Bermudez, L., Garc
´
ıA-Castro,
R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M.,
Henson, C., Herzog, A., et al. (2012). The ssn on-
tology of the w3c semantic sensor network incubator
group. Web semantics: science, services and agents
on the World Wide Web, 17:25–32.
Cook, D. L., Mejino Jr, J. L., Neal, M. L., and Gennari, J. H.
(2008). Bridging biological ontologies and biosimu-
lation: the ontology of physics for biology. In AMIA
Annual Symposium Proceedings, volume 2008, page
136. American Medical Informatics Association.
Corcho, O., Fernandez-Lopez, M., and Gomez-Perez, A.
(2007). Ontological engineering: what are ontologies
13
https://projects.tib.eu/orkg/
and how can we build them? In Semantic web ser-
vices: Theory, tools and applications, pages 44–70.
IGI Global.
de Almeida Falbo, R. (2014). Sabio: Systematic approach
for building ontologies. In ONTO. COM/ODISE@
FOIS.
Fathalla, S., Auer, S., and Lange, C. (2020). Towards the se-
mantic formalization of science. In Proceedings of the
35th Annual ACM Symposium on Applied Computing,
pages 2057–2059.
Fathalla, S., Vahdati, S., Auer, S., and Lange, C. (2017). To-
wards a knowledge graph representing research find-
ings by semantifying survey articles. In International
Conference on Theory and Practice of Digital Li-
braries, pages 315–327. Springer.
Fathalla, S., Vahdati, S., Auer, S., and Lange, C. (2018).
Semsur: a core ontology for the semantic representa-
tion of research findings. Procedia Computer Science,
137:151–162.
Feynman, R. P., Leighton, R. B., and Sands, M. (1965). The
feynman lectures on physics; vol. i. American Journal
of Physics, 33(9):750–752.
Gangemi, A., Catenacci, C., Ciaramita, M., and Lehmann,
J. (2005). Ontology evaluation and validation: an
integrated formal model for the quality diagnostic
task. On-line: http://www. loa-cnr. it/Files/OntoE-
val4OntoDev Final. pdf.
G
´
omez-P
´
erez, A. (2001). Evaluation of ontologies. Interna-
tional Journal of intelligent systems, 16(3):391–409.
Hammond, T. and Pasin, M. (2015). The nature. com on-
tologies portal. In LISC@ ISWC, pages 2–14.
Hey, A. J., Tansley, S., Tolle, K. M., et al. (2009). The
fourth paradigm: data-intensive scientific discovery,
volume 1. Microsoft research Redmond, WA.
Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S.,
Grosof, B., Dean, M., et al. (2004). Swrl: A semantic
web rule language combining owl and ruleml. W3C
Member submission, 21(79):1–31.
Jaradeh, M. Y., Auer, S., Prinz, M., Kovtun, V.,
Kismih
´
ok, G., and Stocker, M. (2019a). Open re-
search knowledge graph: Towards machine action-
ability in scholarly communication. arXiv preprint
arXiv:1901.10816.
Jaradeh, M. Y., Oelen, A., Farfar, K. E., Prinz, M., D’Souza,
J., Kismih
´
ok, G., Stocker, M., and Auer, S. (2019b).
Open research knowledge graph: Next generation in-
frastructure for semantic scholarly knowledge. In Ke-
jriwal, M., Szekely, P. A., and Troncy, R., editors,
Proceedings of the 10th International Conference on
Knowledge Capture, K-CAP 2019, Marina Del Rey,
CA, USA, November 19-21, 2019, pages 243–246.
ACM.
Jaradeh, M. Y., Oelen, A., Prinz, M., Stocker, M., and Auer,
S. (2019c). Open research knowledge graph: A sys-
tem walkthrough. In Doucet, A., Isaac, A., Golub, K.,
Aalberg, T., and Jatowt, A., editors, Digital Libraries
for Open Knowledge - 23rd International Conference
on Theory and Practice of Digital Libraries, TPDL
2019, Oslo, Norway, September 9-12, 2019, Proceed-
KEOD 2020 - 12th International Conference on Knowledge Engineering and Ontology Development
74