logic handbook: Theory, implementation and applica-
tions. Cambridge university press.
Brachman, R., Levesque, H., and Pagnucco, M. (2004).
Knowledge Representation and Reasoning. Morgan
Kaufmann.
Dudycz, H. (2017). Application of semantic network visu-
alization as a managerial support instrument in finan-
cial analyses. Online Journal of Applied Knowledge
Management A Publication of the International Insti-
tute for Applied Knowledge Management, 5(1).
Ehrlinger, L. and Wöß, W. (2016). Towards a definition
of knowledge graphs. SEMANTiCS (Posters, Demos,
SuCCESS), 48.
Eiter, T., Ianni, G., Krennwallner, T., and Polleres, A.
(2008). Rules and ontologies for the semantic web.
In Reasoning web, pages 1–53. Springer.
Fensel, D., ¸Sim¸sek, U., Angele, K., Huaman, E., Kärle, E.,
Panasiuk, O., Toma, I., Umbrich, J., and Wahler, A.
(2020). Knowledge Graphs. Springer.
Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C.,
de Melo, G., Gutierrez, C., Gayo, J. E. L., Kirrane, S.,
Neumaier, S., Polleres, A., et al. (2020). Knowledge
graphs. arXiv preprint arXiv:2003.02320.
Horzyk, A. (2013). Artificial associative systems and as-
sociative artificial intelligence. EXIT, Warsaw, pages
1–276.
Janssens, L., De Smedt, J., and Vanthienen, J. (2016). Mod-
eling and enacting enterprise decisions. In Interna-
tional Conference on Advanced Information Systems
Engineering, pages 169–180. Springer.
Ji, S., Pan, S., Cambria, E., Marttinen, P., and Yu, P. S.
(2020). A survey on knowledge graphs: Represen-
tation, acquisition and applications. arXiv preprint
arXiv:2002.00388.
Ławrynowicz, A. (2017). Semantic data mining: an
ontology-based approach, volume 29. IOS Press.
Mineau, G. W. (1998). From actors to processes: The rep-
resentation of dynamic knowledge using conceptual
graphs. In International Conference on Conceptual
Structures, pages 65–79. Springer.
Nalepa, G. J. and Furma
´
nska, W. T. (2010a). Integration
proposal for description logic and attributive logic–
towards semantic web rules. In Transactions on
computational collective intelligence II, pages 1–23.
Springer, Berlin, Heidelberg.
Nalepa, G. J. and Furma
´
nska, W. T. (2010b). Pellet-heart–
proposal of an architecture for ontology systems with
rules. In Annual Conference on Artificial Intelligence,
pages 143–150. Springer, Berlin, Heidelberg.
Negnevitsky, M. (2005). Artificial intelligence: a guide to
intelligent systems. Pearson education.
Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., and
Taylor, J. (2019). Industry-scale knowledge graphs:
Lessons and challenges. Queue, 17(2):48–75.
OMG (2011). Business Process Model and Notation
(BPMN): Version 2.0 specification. Technical Report
formal/2011-01-03, Object Management Group.
OMG (2014). Decision model and notation. beta1. Tech-
nical Report dtc/2014-02-01, Object Management
Group.
Paulheim, H. (2017). Knowledge graph refinement: A sur-
vey of approaches and evaluation methods. Semantic
web, 8(3):489–508.
Rademakers, T. and van Liempd, R. (2012). Activiti in
Action: Executable business processes in BPMN 2.0.
Manning Publications.
Singhal, A. (2012). Introducing the knowledge graph:
things, not strings, may 2012. URL http://googleblog.
blogspot. ie/2012/05/introducing-knowledgegraph-
things-not. html.
Sowa, J. (1987). Encyclopedia of Artificial Intelligence,
chapter Semantic Networks. Wiley, New York. re-
vised and extended for the second edition, 1992.
Sowa, J. F. (1992). Conceptual graphs as a universal knowl-
edge representation. Computers & Mathematics with
Applications, 23(2-5):75–93.
Staab, S. and Studer, R. (2010). Handbook on ontologies.
Springer Science & Business Media.
Torsun, I. S. (1995). Foundations of intelligent knowledge-
based systems.
Uschold, M., Gruninger, M., et al. (1996). Ontologies: Prin-
ciples, methods and applications. Technical Report-
University of Edinburgh Artificial Intelligence Appli-
cations Institute AIAI TR.
van der Aalst, W. M. (2019). Modeling and reasoning over
declarative data-aware processes with object-centric
behavioral constraints. In Business Process Man-
agement: 17th International Conference, BPM 2019,
Vienna, Austria, September 1–6, 2019, Proceedings,
volume 11675, page 139. Springer.
Yahya, M., Barbosa, D., Berberich, K., Wang, Q., and
Weikum, G. (2016a). Relationship queries on ex-
tended knowledge graphs. In Proceedings of the Ninth
ACM International Conference on Web Search and
Data Mining, pages 605–614.
Yahya, M., Berberich, K., Ramanath, M., and Weikum, G.
(2016b). Exploratory querying of extended knowl-
edge graphs. Proceedings of the VLDB Endowment,
9(13):1521–1524.
Yoo, S. and Jeong, O. (2020). Automating the expansion of
a knowledge graph. Expert Systems with Applications,
141:112965.
Zhang, Y., Sheng, M., Zhou, R., Wang, Y., Han, G., Zhang,
H., Xing, C., and Dong, J. (2020). Hkgb: An in-
clusive, extensible, intelligent, semi-auto-constructed
knowledge graph framework for healthcare with clini-
cians’ expertise incorporated. Information Processing
& Management, page 102324.
KEOD 2020 - 12th International Conference on Knowledge Engineering and Ontology Development
180