examine if smaller tree size does offer more user in-
terpretability. It is possible that another metric, such
as the number of variables used or the presence of par-
ticular subtrees, may grant better interpretability and
must be investigated.
ACKNOWLEDGEMENTS
The authors thank the anonymous reviewers for their
time, comments and helpful suggestions. The au-
thors are supported by Research Grants 13/RC/2094
and 16/IA/4605 from the Science Foundation Ire-
land and by Lero, the Irish Software Engineering Re-
search Centre (www.lero.ie). The third and fourth
authors are partially financed by the Coordenac¸
˜
ao
de Aperfeic¸oamento de Pessoal de N
´
ıvel Superior -
Brasil (CAPES) - Finance Code 001.
REFERENCES
Adadi, A. and Berrada, M. (2018). Peeking inside the black-
box: A survey on explainable artificial intelligence
(xai). IEEE Access, 6:52138–52160.
Ain, Q. U., Al-Sahaf, H., Xue, B., and Zhang, M. (2018).
A multi-tree genetic programming representation for
melanoma detection using local and global features.
In Mitrovic, T., Xue, B., and Li, X., editors, AI 2018:
Advances in Artificial Intelligence, pages 111–123,
Cham. Springer International Publishing.
Arrieta, A. B., D
´
ıaz-Rodr
´
ıguez, N., Ser, J. D., Bennetot,
A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S.,
Molina, D., Benjamins, R., Chatila, R., and Herrera, F.
(2020). Explainable artificial intelligence (xai): Con-
cepts, taxonomies, opportunities and challenges to-
ward responsible ai. Information Fusion, 58:82 – 115.
Azad, R. M. A. and Ryan, C. (2014). The best things don’t
always come in small packages: Constant creation
in grammatical evolution. In Nicolau, M., Krawiec,
K., Heywood, M. I., Castelli, M., Garc
´
ıa-S
´
anchez, P.,
Merelo, J. J., Rivas Santos, V. M., and Sim, K., ed-
itors, Genetic Programming, pages 186–197, Berlin,
Heidelberg. Springer Berlin Heidelberg.
Carvalho, D. V., Pereira, E. M., and Cardoso, J. S.
(2019). Machine Learning Interpretability: A Survey
on Methods and Metrics. Electronics, 8(8):832.
Cord
´
on, O. (2011). A historical review of evolutionary
learning methods for Mamdani-type fuzzy rule-based
systems: Designing interpretable genetic fuzzy sys-
tems. International journal of approximate reasoning,
52(6):894–913. Publisher: Elsevier.
Do
ˇ
silovi
´
c, F. K., Br
ˇ
ci
´
c, M., and Hlupi
´
c, N. (2018). Explain-
able artificial intelligence: A survey. In 2018 41st In-
ternational Convention on Information and Communi-
cation Technology, Electronics and Microelectronics
(MIPRO), pages 0210–0215.
dos Santos, A. R. (2014). S
´
ıntese de
´
Arvores de Padr
˜
oes
Fuzzy atrav
´
es de Programac¸
˜
ao Gen
´
etica Cartesiana.
PhD thesis, Dissertac¸
˜
ao de mestrado, Universidade do
Estado do Rio de Janeiro.
dos Santos, A. R. and do Amaral, J. L. M. (2015). Synthesis
of Fuzzy Pattern Trees by Cartesian Genetic Program-
ming. Mathware & soft computing, 22(1):52–56.
dos Santos, A. R., do Amaral, J. L. M., Soares, C. A. R.,
and de Barros, A. V. (2018). Multi-objective fuzzy
pattern trees. In 2018 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), pages 1–6.
Dua, D. and Graff, C. (2017). UCI machine learning repos-
itory.
Espejo, P. G., Ventura, S., and Herrera, F. (2009). A
survey on the application of genetic programming to
classification. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews),
40(2):121–144.
Fitzgerald, J. and Ryan, C. (2012). Exploring boundaries:
optimising individual class boundaries for binary clas-
sification problem. In Proceedings of the 14th annual
conference on Genetic and evolutionary computation,
pages 743–750.
Goldman, B. W. and Punch, W. F. (2014). Analysis of
cartesian genetic programming’s evolutionary mech-
anisms. IEEE Transactions on Evolutionary Compu-
tation, 19(3):359–373. Publisher: IEEE.
He, K., Zhang, X., Ren, S., and Sun, J. (2015).
Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification.
arXiv:1502.01852 [cs]. arXiv: 1502.01852.
Herrera, F. (2008). Genetic fuzzy systems: taxonomy, cur-
rent research trends and prospects. Evolutionary In-
telligence, 1(1):27–46. Publisher: Springer.
H
¨
ullermeier, E. (2005). Fuzzy methods in machine learning
and data mining: Status and prospects. Fuzzy Sets and
Systems, 156(3):387–406.
Huang, Z., Gedeon, T. D., and Nikravesh, M. (2008). Pat-
tern trees induction: A new machine learning method.
Trans. Fuz Sys., 16(4):958–970.
Karim, M. R. and Ryan, C. (2011a). Degeneracy reduction
or duplicate elimination? an analysis on the perfor-
mance of attributed grammatical evolution with looka-
head to solve the multiple knapsack problem. In Na-
ture Inspired Cooperative Strategies for Optimization,
NICSO 2011, Cluj-Napoca, Romania, October 20-22,
2011, pages 247–266.
Karim, M. R. and Ryan, C. (2011b). A new approach
to solving 0-1 multiconstraint knapsack problems us-
ing attribute grammar with lookahead. In Genetic
Programming - 14th European Conference, EuroGP
2011, Torino, Italy, April 27-29, 2011. Proceedings,
pages 250–261.
Karim, M. R. and Ryan, C. (2014). On improving gram-
matical evolution performance in symbolic regression
with attribute grammar. In Genetic and Evolution-
ary Computation Conference, GECCO ’14, Vancou-
ver, BC, Canada, July 12-16, 2014, Companion Mate-
rial Proceedings, pages 139–140.
Grammar-based Fuzzy Pattern Trees for Classification Problems
79