S. A. (2012). An ensemble classification-based
approach applied to retinal blood vessel segmenta-
tion. IEEE Transactions on Biomedical Engineering,
59(9):2538–2548.
LeCun, Y., Bengio, Y., et al. (1995). Convolutional net-
works for images, speech, and time series. The
handbook of brain theory and neural networks,
3361(10):1995.
Li, Q., Feng, B., Xie, L., Liang, P., Zhang, H., and Wang, T.
(2015). A cross-modality learning approach for vessel
segmentation in retinal images. IEEE transactions on
medical imaging, 35(1):109–118.
Liskowski, P. and Krawiec, K. (2016). Segmenting retinal
blood vessels with deep neural networks. IEEE trans-
actions on medical imaging, 35(11):2369–2380.
Liu, N., Li, H., Zhang, M., Jing Liu, Sun, Z., and Tan, T.
(2016). Accurate iris segmentation in non-cooperative
environments using fully convolutional networks. In
2016 International Conference on Biometrics (ICB),
pages 1–8.
Melin
ˇ
s
ˇ
cak, M., Prenta
ˇ
si
´
c, P., and Lon
ˇ
cari
´
c, S. (2015). Reti-
nal vessel segmentation using deep neural networks.
In 10th International Conference on Computer Vision
Theory and Applications (VISAPP 2015).
Ogurtsova, K., da Rocha Fernandes, J., Huang, Y., Lin-
nenkamp, U., Guariguata, L., Cho, N. H., Cavan, D.,
Shaw, J., and Makaroff, L. (2017). Idf diabetes at-
las: Global estimates for the prevalence of diabetes
for 2015 and 2040. Diabetes research and clinical
practice, 128:40–50.
Osareh, A. and Shadgar, B. (2009). Automatic blood vessel
segmentation in color images of retina.
Parikh, Y., Chaskar, U., and Khakole, H. (2014). Effec-
tive approach for iris localization in nonideal imaging
conditions. In Proceedings of the 2014 IEEE Students’
Technology Symposium, pages 239–246.
Ronneberger, O., Fischer, P., and Brox, T. (2015a). U-
net: Convolutional networks for biomedical image
segmentation. CoRR, abs/1505.04597.
Ronneberger, O., Fischer, P., and Brox, T. (2015b). U-
net: Convolutional networks for biomedical image
segmentation. In Navab, N., Hornegger, J., Wells,
W. M., and Frangi, A. F., editors, Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI
2015, Lecture Notes in Computer Scienc, Munich,
Germany. Springer International Publishing.
Roy, D. A. and Soni, U. S. (2016). Iris segmentation us-
ing daughman’s method. In 2016 International Con-
ference on Electrical, Electronics, and Optimization
Techniques (ICEEOT), pages 2668–2676.
Roychowdhury, S., Koozekanani, D. D., and Parhi, K. K.
(2014). Blood vessel segmentation of fundus images
by major vessel extraction and subimage classifica-
tion. IEEE journal of biomedical and health infor-
matics, 19(3):1118–1128.
Soares, J. V., Leandro, J. J., Cesar, R. M., Jelinek, H. F., and
Cree, M. J. (2006). Retinal vessel segmentation using
the 2-d gabor wavelet and supervised classification.
IEEE Transactions on medical Imaging, 25(9):1214–
1222.
Unet-code. Retina blood vessel segmentation with a con-
volutional neural network. https://github.com/orobix/
retina-unet. Accessed: 2020-04-15.
Vision, S. (2020). Diagnosing and treating diabetic
retinopathy in dallas. https://salandvision.com/
eye-conditions/diabetic-retinopathy/. [Online; ac-
cessed 20-June-2020].
Xiancheng, W., Wei, L., Bingyi, M., He, J., Jiang, Z.,
Xu, W., Ji, Z., Hong, G., and Zhaomeng, S. (2018).
Retina blood vessel segmentation using a u-net based
convolutional neural network. In Procedia Computer
Science: International Conference on Data Science
(ICDS 2018), Beijing, China, pages 8–9.
GA-based U-Net Architecture Optimization Applied to Retina Blood Vessel Segmentation
199