5 CONCLUSION
In this paper, we propose a new method to improve
the training process in multi-class classification using
CNN. The method proposed in this paper is different
from training with random parameter adjustment, but
based on the actual properties of the feature maps
after the basic training. Between-class distance is
used in this paper to find the specific classes that are
not trained sufficiently in the basic training. Then
additional training processes are used to deal with the
insufficient training problem. It is found that the
between-class distances computed on the learned
feature maps can be used to improve the network
training. In the future, we will test whether the
proposed method is practical on more sophisticated
networks and larger datasets.
ACKNOWLEDGEMENTS
This work is supported by the National Key R&D
Program of China (Grants No. 2017YFE0111900,
2018YFB1003205).
REFERENCE
Lecun, Y. , Boser, B. , Denker, J. , Henderson, D. , Howard,
R. , & Hubbard, W. , et al. (1989). Backpropagation
applied to handwritten zip code recognition. Neural
Computation, 1(4), 541-551.
Lecun, Y. , & Bottou, L. . (1998). Gradient-based learning
applied to document recognition. Proceedings of the
IEEE, 86(11), 2278-2324.
Krizhevsky, Alex, Sutskever, Ilya, Hinton, Geoffrey E.
Advances in Neural Information Processing Systems, v
2, p 1097-1105, 2012
Deng, J., Dong, W., Socher, R. , Li, L. J. , & Li, F. F. . (2009).
ImageNet: A large-scale hierarchical image database.
IEEE Conference on Computer Vision & Pattern
Recognition. IEEE.
Szegedy, C. , Liu, W. , Jia, Y. , Sermanet, P. , Reed, S. , &
Anguelov, D., et al. (2014). Going deeper with
convolutions.
Simonyan, K. , & Zisserman, A. . (2014). Very deep
convolutional networks for large-scale image
recognition. Computer ence.
Huang, G. , Liu, Z. , Laurens, V. D. M. , & Weinberger, K.
Q. (2017). Densely connected convolutional networks.
Gerardo Hernández, Zamora, E. , Sossa, H. , Germán Té
llez, & Federico Furl á n. (2019). Hybrid neural
networks for big data classification. Neurocomputing.
Ren, S. , He, K. , Girshick, R. , & Sun, J. . (2017). Faster r-
cnn: towards real-time object detection with region
proposal networks. IEEE Transactions on Pattern
Analysis & Machine Intelligence, 39(6), 1137-1149.
Dai, J., Li, Y., He, K., & Sun, J. (2016). R-FCN: Object
Detection via Region-based Fully Convolutional
Networks. NIPS.
He, K. , Gkioxari, G. , Piotr Dollár, & Girshick, R. . (2017).
Mask R-CNN. 2017 IEEE International Conference on
Computer Vision (ICCV). IEEE.
Er, M. J. , Zhang, Y. , Wang, N. , & Pratama, M. . (2016).
Attention pooling-based convolutional neural network
for sentence modelling. Information ences An
International Journal.
Zhang, Q. S. , & Zhu, S. C. . (2018). Visual interpretability
for deep learning: a survey. Frontiers of Information
Technology & Electronic Engineering, 19(01), 27-39.
Zeiler, M. D. , & Fergus, R. (2014). Visualizing and
Understanding Convolutional Networks. European
Conference on Computer Vision. Springer, Cham.
Mahendran, A. , & Vedaldi, A. . (2014). Understanding deep
image representations by inverting them.
Bau, D., Zhou, B., Khosla, A., Oliva, A., & Torralba, A.
(2017). Network Dissection: Quantifying
Interpretability of Deep Visual Representations. 2017
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 3319-3327.
Zhang, Q. , Cao, R. , Shi, F. , Wu, Y. N. , & Zhu, S. C. .
(2017). Interpreting cnn knowledge via an explanatory
graph.
Yosinski, J. , Clune, J. , Bengio, Y. , & Lipson, H. . (2014).
How transferable are features in deep neural networks?.
International Conference on Neural Information
Processing Systems. MIT Press.
Zintgraf, L. M. , Cohen, T. S. , Adel, T. , & Welling, M. .
(2017). Visualizing deep neural network decisions:
prediction difference analysis.
Lakkaraju, H., Kamar, E., Caruana, R., & Horvitz, E. (2017).
Identifying Unknown Unknowns in the Open World:
Representations and Policies for Guided Exploration.
AAAI.
Ribeiro, M. T. , Singh, S. , & Guestrin, C. . (2016). "why
should i trust you?": explaining the predictions of any
classifier.
Zhang, Q. , Yang, Y. , Ma, H. , & Wu, Y. N. . (2019).
Interpreting cnns via decision trees.
Fergus, R. , Taylor, G. W. , & Zeiler, M. D. . (2011).
Adaptive deconvolutional networks for mid and high
level feature learning. International Conference on
Computer Vision. IEEE Computer Society.
Cohen, G. , Afshar, S. , Tapson, J. , & Schaik, A. V. . (2017).
EMNIST: Extending MNIST to handwritten letters.
International Joint Conference on Neural Networks.
IEEE.