and study the node scalability. A significant limita-
tion to overcome in the future is to handle imported
ontologies, since, at the moment, DistOWL lacks the
ability to parse the imported ontologies. Another di-
rection to extend DistOWL is to develop an algorithm
to convert the generated axioms to a complete ontol-
ogy with a different syntax.
ACKNOWLEDGEMENTS
This work has been supported by the following EU
Horizon2020 projects: LAMBDA project (GA no.
809965) and PLATOON project (GA no. 872592).
REFERENCES
Bechhofer, S., Volz, R., and Lord, P. (2003). Cooking the
semantic web with the owl api. In International Se-
mantic Web Conference, pages 659–675. Springer.
Berners-Lee, T. (2006). Linked data. Available at https:
//www.w3.org/DesignIssues/LinkedData.html.
El Houby, E. (2015). World geographical ontology
model. International Journal of Computer Applica-
tions, 120:25–33.
Fanizzi, N., d’Amato, C., and Esposito, F. (2010). Induc-
tion of concepts in web ontologies through termino-
logical decision trees. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 442–457. Springer.
Fathalla, S., Vahdati, S., Auer, S., and Lange, C. (2018).
Semsur: a core ontology for the semantic representa-
tion of research findings. Procedia Computer Science,
137:151–162.
Fathalla, S., Vahdati, S., Auer, S., and Lange, C. (2019).
The scientific events ontology of the openresearch.
org curation platform. In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing,
pages 2311–2313.
F
¨
urst, F. and Trichet, F. (2005). Axiom-based ontology
matching. In Proceedings of the 3rd international con-
ference on Knowledge capture, pages 195–196.
F
¨
urst, F. and Trichet, F. (2009). Axiom-based ontology
matching. Expert Systems, 26(2):218–246.
Gu, R., Wang, S., Wang, F., Yuan, C., and Huang, Y.
(2015). Cichlid: efficient large scale rdfs/owl reason-
ing with spark. In 2015 IEEE International Parallel
and Distributed Processing Symposium, pages 700–
709. IEEE.
Guo, Y., Pan, Z., and Heflin, J. (2005). Lubm: A bench-
mark for owl knowledge base systems. Web Seman-
tics: Science, Services and Agents on the World Wide
Web, 3(2-3):158–182.
Hitzler, P., Kr
¨
otzsch, M., Parsia, B., Patel-Schneider, P. F.,
Rudolph, S., et al. (2009). Owl 2 web ontology lan-
guage primer. W3C recommendation, 27(1):123.
Horridge, M. and Bechhofer, S. (2011). The owl api: A java
api for owl ontologies. Semantic Web, 2(1):11–21.
Knublauch, H., Fergerson, R. W., Noy, N. F., and Musen,
M. A. (2004). The prot
´
eg
´
e owl plugin: An open
development environment for semantic web applica-
tions. In International Semantic Web Conference,
pages 229–243. Springer.
Lee, S. and Shin, Y. G. (1988). Multi-agent Coopera-
tive Problem Solving and Learning with Axiom-based
Reasoning. Computer Research Institute, Department
of Computer Science, Department of . . . .
Lehmann, J., Sejdiu, G., B
¨
uhmann, L., Westphal, P.,
Stadler, C., Ermilov, I., Bin, S., Chakraborty, N.,
Saleem, M., Ngomo, A.-C. N., et al. (2017). Dis-
tributed semantic analytics using the sansa stack. In
International Semantic Web Conference, pages 147–
155. Springer.
Musen, M. (2015). The prot
´
eg
´
e project: A look back and
a look forward. AI Matters.Association of Computing
Machinery Specific Interest Group in Artificial Intelli-
gence, 1(4).
Schriml, L. M., Arze, C., Nadendla, S., Chang, Y.-W. W.,
Mazaitis, M., Felix, V., Feng, G., and Kibbe, W. A.
(2012). Disease ontology: a backbone for dis-
ease semantic integration. Nucleic acids research,
40(D1):D940–D946.
Shvachko, K., Kuang, H., Radia, S., Chansler, R., et al.
(2010). The hadoop distributed file system. In MSST,
volume 10, pages 1–10.
Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W.,
Ceusters, W., Goldberg, L. J., Eilbeck, K., Ireland, A.,
Mungall, C. J., et al. (2007). The obo foundry: coor-
dinated evolution of ontologies to support biomedical
data integration. Nature biotechnology, 25(11):1251–
1255.
Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,
McCauley, M., Franklin, M. J., Shenker, S., and Sto-
ica, I. (2012). Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing.
In Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, pages 2–
2. USENIX Association.
KEOD 2020 - 12th International Conference on Knowledge Engineering and Ontology Development
234