John, S. E., Gurnani, A. S., Bussell, C., Saurman, J. L.,
Griffin, J. W., & Gavett, B. E. (2016). The effectiveness
and unique contribution of neuropsychological tests
and the δ latent phenotype in the differential diagnosis
of dementia in the uniform data set. Neuropsychology,
30(8), 946.
Joshi, A. V. (2020). Perceptron and Neural Networks. In
Machine Learning and Artificial Intelligence (pp. 43–
51). Springer, Cham.
Kang, M. J., Kim, S. Y., Na, D. L., Kim, B. C., Yang, D.
W., Kim, E.-J., Na, H. R., Han, H. J., Lee, J.-H., Kim,
J. H., Park, K. H., Park, K. W., Han, S.-H., Kim, S. Y.,
Yoon, S. J., Yoon, B., Seo, S. W., Moon, S. Y., Yang,
Y., … Youn, Y. C. (2019). Prediction of cognitive
impairment via deep learning trained with multi-center
neuropsychological test data. BMC Medical
Informatics and Decision Making, 19(1), 231.
https://doi.org/10.1186/s12911-019-0974-x
Khan, T., & Jacobs, P. (2020). Prediction of mild cognitive
impairment using movement complexity. IEEE Journal
of Biomedical and Health Informatics.
https://doi.org/10.1109/JBHI.2020.2985907
Kingma, D. P., & Ba, J. (2014). Adam: A method for
stochastic optimization. ArXiv Preprint
ArXiv:1412.6980.
Lee, G. G. C., Huang, P.-W., Xie, Y.-R., & Pai, M.-C.
(2019). Classification of Alzheimer’s Disease, Mild
Cognitive Impairment, and Cognitively Normal Based
on Neuropsychological Data via Supervised Learning.
TENCON 2019-2019 IEEE Region 10 Conference
(TENCON), 1808–1812.
Marsland, S. (2015). Machine learning: An algorithmic
perspective (2nd ed). CRC press.
Nagumo, R., Zhang, Y., Ogawa, Y., Hosokawa, M., Abe,
K., Ukeda, T., Sumi, S., Kurita, S., Nakakubo, S., Lee,
S., Doi, T., & Shimada, H. (2020). Automatic Detection
of Cognitive Impairments through Acoustic Analysis of
Speech. Current Alzheimer Research, 17(1), 60–68.
https://doi.org/10.2174/1567205017666200213094513
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., & Dubourg, V. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine
Learning Research, 12(Oct), 2825–2830.
Pellegrini, E., Ballerini, L., Hernandez, M. D. C. V.,
Chappell, F. M., González-Castro, V., Anblagan, D.,
Danso, S., Muñoz-Maniega, S., Job, D., Pernet, C.,
Mair, G., MacGillivray, T. J., Trucco, E., & Wardlaw,
J. M. (2018). Machine learning of neuroimaging for
assisted diagnosis of cognitive impairment and
dementia: A systematic review. Alzheimer’s &
Dementia (Amsterdam, Netherlands), 10, 519–535.
https://doi.org/10.1016/j.dadm.2018.07.004
Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M.
C., Gamst, A. C., & Harvey, D. J. (2010). Alzheimer’s
disease neuroimaging initiative (ADNI). Neurology,
74(3), 201–209.
Pfeffer, R. I., Kurosaki, T. T., Harrah Jr, C. H., Chance, J.
M., & Filos, S. (1982). Measurement of functional
activities in older adults in the community. Journal of
Gerontology, 37(3), 323–329.
Rosen, W., Mohs, R., & Davis, K. (1984). Alzheimer’s
Disease Assessment Scale—Cognitive and Non-
Cognitive Sections (ADAS-Cog, ADAS Non-Cog).
Journal of Psychiatry, 141, 1356–1364.
Seo, E. H. (2018). Neuropsychological assessment of
dementia and cognitive disorders. Journal of Korean
Neuropsychiatric Association, 57(1), 2–11.
Shaffer, J. L., Petrella, J. R., Sheldon, F. C., Choudhury, K.
R., Calhoun, V. D., Coleman, R. E., Doraiswamy, P.
M., & Initiative, A. D. N. (2013). Predicting cognitive
decline in subjects at risk for Alzheimer disease by
using combined cerebrospinal fluid, MR imaging, and
PET biomarkers. Radiology, 266(2), 583–591.
Sharma, S. (2017). Activation functions in neural networks.
Towards Data Science, 6(12), 310–316.
Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A.,
Craft, S., Fagan, A. M., Iwatsubo, T., Jack Jr, C. R.,
Kaye, J., & Montine, T. J. (2011). Toward defining the
preclinical stages of Alzheimer’s disease:
Recommendations from the National Institute on
Aging-Alzheimer’s Association workgroups on
diagnostic guidelines for Alzheimer’s disease.
Alzheimer’s & Dementia, 7(3), 280–292.
Storey, E., & Kinsella, G. J. (2007). Principles of
neuropsychometric assessment. In Neurology and
Clinical Neuroscience (pp. 22–30). Mosby.
Taylor, C. A., Greenlund, S. F., McGuire, L. C., Lu, H., &
Croft, J. B. (2017). Deaths from Alzheimer’s Disease—
United States, 1999–2014. MMWR. Morbidity and
Mortality Weekly Report, 66(20), 521.
Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical
evaluation of rectified activations in convolutional
network. ArXiv Preprint ArXiv:1505.00853.
Yeatts, S. D., Palesch, Y. Y., & Temkin, N. (2018).
Biostatistical issues in TBI clinical trials. In Handbook
of Neuroemergency Clinical Trials (pp. 167–185).
Elsevier.