Autoencoder (AE). And also, the relationship be-
tween different decision variables will be investi-
gated.
REFERENCES
Bi, S. and Zhang, Y. J. (2018). Computation rate maxi-
mization for wireless powered mobile-edge comput-
ing with binary computation offloading. IEEE Trans-
actions on Wireless Communications, 17(6):4177–
4190.
Cai, X., Li, Y., Fan, Z., and Zhang, Q. (2015). An external
archive guided multiobjective evolutionary algorithm
based on decomposition for combinatorial optimiza-
tion. Evolutionary Computation IEEE Transactions
on, 19(4):508–523.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary Compu-
tation, 6(2):182–197.
Guo, F., Zhang, H., Ji, H., Li, X., and Leung, V. C. M.
(2018). An efficient computation offloading man-
agement scheme in the densely deployed small cell
networks with mobile edge computing. IEEE/ACM
Transactions on Networking, 26(6):2651–2664.
He, C., Li, L., Tian, Y., Zhang, X., Cheng, R., Jin,
Y., and Yao, X. (2019). Accelerating large-scale
multiobjective optimization via problem reformula-
tion. IEEE Transactions on Evolutionary Computa-
tion, 23(6):949–961.
Hinton, G. E. (2002). Training products of experts by min-
imizing contrastive divergence. Neural computation,
14(8):1771–1800.
Hochstrate, N., Naujoks, B., and Emmerich, M. (2007).
Sms-emoa: Multiobjective selection based on domi-
nated hypervolume. European Journal of Operational
Research, 181:1653–1669.
Huang, L., Feng, X., Feng, A., Huang, Y., and ping Qian, L.
(2018). Distributed deep learning-based offloading for
mobile edge computing networks. Mobile Networks
and Applications, pages 1–8.
Mach, P. and Becvar, Z. (2017). Mobile edge comput-
ing: A survey on architecture and computation of-
floading. IEEE Communications Surveys & Tutorials,
19(3):1628–1656.
Sahu, I. and Pandey, U. S. (2018). Mobile cloud comput-
ing: Issues and challenges. In 2018 International Con-
ference on Advances in Computing, Communication
Control and Networking (ICACCCN), pages 247–250.
Sheikh, I. and Das, O. (2018). Modeling the effect of paral-
lel execution on multi-site computation offloading in
mobile cloud computing. In Computer Performance
Engineering, pages 219–234.
Tian, Y., Lu, C., Zhang, X., Tan, K. C., and Jin, Y. (2020a).
Solving large-scale multiobjective optimization prob-
lems with sparse optimal solutions via unsupervised
neural networks. IEEE Transactions on Cybernetics,
pages 1–14.
Tian, Y., Zhang, X., Wang, C., and Jin, Y. (2020b). An
evolutionary algorithm for large-scale sparse multiob-
jective optimization problems. IEEE Transactions on
Evolutionary Computation, 24(2):380–393.
Wu, H., Knottenbelt, W. J., and Wolter, K. (2019). An effi-
cient application partitioning algorithm in mobile en-
vironments. IEEE Transactions on Parallel and Dis-
tributed Systems, 30(7):1464–1480.
Xu, X., Liu, Q., Luo, Y., Peng, K., Zhang, X., Meng, S.,
and Qi, L. (2019). A computation offloading method
over big data for iot-enabled cloud-edge computing.
Future Generation Computer Systems, 95:522–533.
Yu, S., Chen, X., Yang, L., Wu, D., Bennis, M., and Zhang,
J. (2020). Intelligent edge: Leveraging deep imita-
tion learning for mobile edge computation offloading.
IEEE Wireless Communications, 27(1):92–99.
Zhang, X., Tian, Y., Cheng, R., and Jin, Y. (2018). A
decision variable clustering-based evolutionary al-
gorithm for large-scale many-objective optimization.
IEEE Transactions on Evolutionary Computation,
22(1):97–112.
Zille, H. and Mostaghim, S. (2019). Linear search mecha-
nism for multi- and many-objective optimisation. In
EMO.
Zitzler, E., Laumanns, M., and Thiele, L. (2001). Spea2:
Improving the strength pareto evolutionary algorithm
for multiobjective optimization. volume 3242.
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M.,
and Da Fonseca, V. G. (2003). Performance assess-
ment of multiobjective optimizers: An analysis and
review. IEEE Transactions on evolutionary computa-
tion, 7(2):117–132.
Evolutionary Large-scale Sparse Multi-objective Optimization for Collaborative Edge-cloud Computation Offloading
111