of the 2nd International Workshop on Historical
Document Imaging and Processing - HIP ’13, 67.
Gatos, B., Louloudis, G., & Stamatopoulos, N. (2014).
Segmentation of historical handwritten documents into
text zones and text lines. 2014 14th International
Conference on Frontiers in Handwriting Recognition,
464–469.
Granell, E., Chammas, E., Likforman-Sulem, L., Martínez-
Hinarejos, C.-D., Mokbel, C., & Cîrstea, B.-I. (2018).
Transcription of spanish historical handwritten
documents with deep neural networks. Journal of
Imaging, 4(1), 15.
Heil, J., & Samuelson, T. (2013). Book history in the early
modern ocr project, or, bringing balance to the force.
Journal for Early Modern Cultural Studies, 13(4), 90–
103.
Jenckel, M., Bukhari, S. S., & Dengel, A. (2016). Anyocr:
A sequence learning based ocr system for unlabeled
historical documents. 2016 23rd International
Conference on Pattern Recognition (ICPR), 4035–
4040.
Kahle, P., Colutto, S., Hackl, G., & Muhlberger, G. (2017).
Transkribus—A service platform for transcription,
recognition and retrieval of historical documents. 2017
14th IAPR International Conference on Document
Analysis and Recognition (ICDAR), 19–24.
Le Bourgeois, F., & Emptoz, H. (2007). Debora: Digital
access to books of the renaissance. International
Journal of Document Analysis and Recognition
(IJDAR), 9(2–4), 193–221.
Mas, J., Rodriguez, J. A., Karatzas, D., Sanchez, G., &
Llados, J. (2008). Histosketch: A semi-automatic
annotation tool for archival documents. 2008 The
Eighth IAPR International Workshop on Document
Analysis Systems, 517–524.
Meyer, E. T., & Eccles, K. (2016). The impacts of digital
collections: Early english books online & house of
commons parliamentary papers (SSRN Scholarly
Paper ID 2740299). Social Science Research Network.
Papadopoulos, C., Pletschacher, S., Clausner, C., &
Antonacopoulos, A. (2013). The IMPACT dataset of
historical document images. Proceedings of the 2nd
International Workshop on Historical Document
Imaging and Processing - HIP ’13, 123.
Pintus, R., Yang, Y., & Rushmeier, H. (2015). Athena:
Automatic text height extraction for the analysis of text
lines in old handwritten manuscripts. Journal on
Computing and Cultural Heritage, 8(1), 1–25.
Pletschacher, S., & Antonacopoulos, A. (2010). The page
(Page analysis and ground-truth elements) format
framework. 2010 20th International Conference on
Pattern Recognition, 257–260.
Raha, P., & Chanda, B. (2019). Restoration of historical
document images using convolutional neural networks.
2019 IEEE Region 10 Symposium (TENSYMP), 56–
61.
Rahnemoonfar, M., & Plale, B. (2013). Automatic
performance evaluation of dewarping methods in large
scale digitization of historical documents. Proceedings
of the 13th ACM/IEEE-CS Joint Conference on Digital
Libraries - JCDL ’13, 331.
Rath, T. M., & Manmatha, R. (2007). Word spotting for
historical documents. International Journal of
Document Analysis and Recognition (IJDAR)
, 9(2),
139–152.
Roe, E., & Mello, C. A. B. (2013). Binarization of color
historical document images using local image
equalization and xdog. 2013 12th International
Conference on Document Analysis and Recognition,
205–209.
Rydberg-Cox, J. A. (2009). Digitizing latin incunabula:
Challenges, methods, and possibilities. Digital
Humanities Quarterly, 003(1).
Sastry, P. N., & Krishnan, R. (2012). A data acquisition and
analysis system for palm leaf documents in Telugu.
Proceeding of the Workshop on Document Analysis and
Recognition, 139–146.
Serrano, N., Castro, F., & Juan, A. (2010, May). The
rodrigo database. Proceedings of the Seventh
International Conference on Language Resources and
Evaluation (LREC’10). LREC 2010, Valletta, Malta.
Shafait, F. (2009). Document image analysis with
OCRopus. 2009 IEEE 13th International Multitopic
Conference, 1–6.
Simistira, F., Seuret, M., Eichenberger, N., Garz, A.,
Liwicki, M., & Ingold, R. (2016). Diva-hisdb: A
precisely annotated large dataset of challenging
medieval manuscripts. 2016 15th International
Conference on Frontiers in Handwriting Recognition
(ICFHR), 471–476.
Springmann, U., & Lüdeling, A. (2017). OCR of historical
printings with an application to building diachronic
corpora: A case study using the RIDGES herbal corpus.
Digital Humanities Quarterly, 011(2).
Springmann, U., Najock, D., Morgenroth, H., Schmid, H.,
Gotscharek, A., & Fink, F. (2014). OCR of historical
printings of Latin texts: Problems, prospects, progress.
Proceedings of the First International Conference on
Digital Access to Textual Cultural Heritage, 71–75.
Su, B., Lu, S., & Tan, C. L. (2010). Binarization of
historical document images using the local maximum
and minimum. Proceedings of the 8th IAPR
International Workshop on Document Analysis Systems
- DAS ’10, 159–166.
Tabrizi, M. H. N. (2008). Digital archiving and data mining
of historic document. 2008 International Conference on
Advanced Computer Theory and Engineering, 19–23.
Ul-Hasan, A., Bukhari, S. S., & Dengel, A. (2016).
Ocroract: A sequence learning ocr system trained on
isolated characters. 2016 12th IAPR Workshop on
Document Analysis Systems (DAS), 174–179.
Vobl, T., Gotscharek, A., Reffle, U., Ringlstetter, C., &
Schulz, K. U. (2014). PoCoTo—An open source system
for efficient interactive postcorrection of OCRed
historical texts. Proceedings of the First International
Conference on Digital Access to Textual Cultural
Heritage, 57–61.
Wei, H., Chen, K., Nicolaou, A., Liwicki, M., & Ingold, R.
(2014). Investigation of feature selection for historical