in Higher Education. International Journal for
Educational Integrity. Vol. 12 (1): 4.
Ouf, S., Abd Ellatif, M., Salama, S.E., and Helmy, Y., 2017.
A Proposed Paradigm for Smart Learning Environment
Based on Semantic Web. Computers in Human
Behavior. Vol. 72, pp. 796–818.
Perkins, D.N., 1995. L’individu-plus Une Vision Distribuée
de la Pensée et de l’Apprentissage. Revue française de
pédagogie. Vol. 111, pp. 57–71.
Negre E., 2015. Information and Recommender Systems.
Wiley Online Library. Vol 4.
FanaeeTork, H. and Yazdi, M., 2013. A semantic VSM-
based recommender system. Int. J. Computer Theory
Eng. Vol. 5 (2), pp. 331-336.
Yoldar, M.T. and Özcan, U., 2019. Collaborative targeting:
Biclustering-based online ad recommendation Electron.
Commer. Res. Appl. Vol. 35, Article 100857.
Paradarami, T.K., Bastian, N.D., and Wightman, J.L., 2017.
A hybrid recommender system using artificial neural
networks. Expert Syst. Appl. Vol. 83, pp. 300-313.
Pan, P.Y., Wang, C.H., Horng, G.J. and Cheng, S.T., 2010.
The development of an ontology based adaptive
personalized recommender system. In: ICEIE 2010–
2010 Int. Conf. Electron. Inf. Eng. Proc. Kyoto, Japan,
pp. 76–80.
Aguilar, J., Valdiviezo-Díaz, P. and Riofrio, G., 2017. A
general framework for intelligent recommender
systems. Applied Computing and Informatics. Vol. 13
(2), pp. 147-160.
Zheng, X.L., Chen, C.C., Hung, J.L., He, W., Hong F.X.
and Lin, Z., 2015. A hybrid trust-based recommender
system for online communities of practice. IEEE Trans.
Learn. Technol. Vol. 8, pp. 345–356.
Chen, W., Niu, Z., Zhao, X. and Li, Y., 2014. A hybrid
recommendation algorithm adapted in e-learning
environments. World Wide Web. Vol. 17, pp. 271–284.
Takano, K. and Li, K.F., 2010. An adaptive e-learning
recommender based on user’s webbrowsing behavior.
In: Proc. - Int. Conf. P2P, Parallel, Grid, Cloud Internet
Comput. pp. 123–131.
Kardan, A.A. and Ebrahimi, M., 2013. A novel approach to
hybrid recommendation systems based on association
rules mining for content recommendation in
asynchronous discussion groups. Inf. Sci. Vol. 219, pp.
93–110.
Sivaramakrishnan, N., Subramaniyaswamy, V.,
Arunkumar, S. and Soundarya Rathna, P., 2018.
VALIDATING EFFECTIVE RESUME BASED ON
EMPLOYER’S INTEREST WITH
RECOMMENDATION SYSTEM. International
Journal of Pure and Applied Mathematics, Academic
Publishing Ltd. Vol. 119 (12e), pp.13261-13272.
Geng, Z.Q., Li, Y.N., Han, Y.M., Zhua, Q.X., 2018. A
novel self-organizing cosine similarity learning
network: An application to production prediction of
petrochemical systems. Energy, Vol. 142, pp. 400-410.
Reiner, D., Tan, M., Ventikos, P., Richard, E., 2001.
System and method for logical view analysis and
visualization of user behavior in a distributed computer
network. United States Patent.
Benevenuto, F., Rodrigues, T., Cha, M., Almeida, V., 2009.
Characterizing user behavior in online social networks.
Proceedings of the 9th ACM SIGCOMM conference on
Internet measurement. pp. 49–62.
Alexandros, K., and Georgios, E., 2013. A Framework for
Recording, Monitoring and Analyzing Learner
Behavior while Watching and Interacting with Online
Educational Videos, 2013 IEEE 13th International
Conference on Advanced Learning Technologies,
Beijing. pp. 20-22.
Ali Ben Ameur, M., Saleh, M., Abel, M-H. and Negre, E.,
2017. Recommendation of Pedagogical Resources
within a Learning Ecosystem. 9th International
Conference on Management of Digital EcoSystems
(MEDES ’17). Nov 2017, Bangkok, Thailand. pp.14-21.
C.Peterson, J., Chen, D., and L.Griffiths, T., 2020.
Parallelograms revisited: Exploring the limitations of
vector space models for simple analogies. Cognition.
Vol. 205, December 2020, 104440.
W.Sholikah, R., Z. Arifin, A., Fatichah, C., and
Purwarianti, A., 2020. Multi task learning with general
vector space for cross-lingual semantic relation
detection. Journal of King Saud University - Computer
and Information Sciences.
Xia, P.P., Zhang, L., Li, F.Z., 2015. Learning similarity
with cosine similarity ensemble. Information Sciences.
Vol. 307, pp. 39–52.
Lü, L., Zhou, T., 2011. Link prediction in complex
networks: A survey. Physica A. Vol. 390 (6), pp. 1150–
1170.
Jalili, M., Ahmadian, S., Izadi, M., Moradi, P., and Salehi,
M., 2018. Evaluating collaborative filtering
recommender algorithms: A survey. IEEE Access. Vol.
6, pp. 74003–74024.
Hawashin, B., Lafi, M., Kanan, T., and Mansour, A.,
2019. An efficient hybrid similarity measure based on
user interests for recommender systems. Expert Syst.
e12471.
Su, Z., Zheng, X.L., Ai, J., Shen, Y.M., and Zhang, X.X.,
2020. Link prediction in recommender systems based on
vector similarity. Physica A: Statistical Mechanics and
its Applications. Vol. 560, 15 December 2020, 125154.
Kanoje, S., Mukhopadhyay, D., and Girase, S., 2016. User
Profiling for University Recommender System Using
Automatic Information Retrieval. Procedia Computer
Science. Vol. 78, 2016, pp. 5-12.
Pan, Y.H., Huo, Y.F., Tang, J., Zeng Y.F., and Chen, B.L.,
2020. Exploiting Relational Tag Expansion for
Dynamic User Profile in a Tag-aware Ranking
Recommender System. Information Sciences. Available
online 18 September 2020.
Abel, M.H., 2015. Knowledge map-based web platform to
facilitate organizational learning return of experiences.
Comput. Hum. Behav. Vol. 51, pp. 960-966.