applies four forms of ANN architectures, which are
ANN 7-8-1, 7-9-1, 7-10-1, and 7-14-1. However, the
best form is 7-14-1 because it produced the smallest
MSE value of 59.23, with the resulting CPI forecast
values of 124.73, 124.84, 124.91, 124.83, 124.94,
125.37, 126.19, 126.59, 126.66, 126.72, 127.01, and
127.54.
Secondly, although both methods can be used for
forecasting, ANN provides better forecasting results
than ARIMA in forecasting research for the
Indonesian CPI value, with a difference of 9.09 in
MSE values, where ARIMA produced an MSE of
68.32 while ANN produced an MSE of 59.23.
However, although the resulting MSE is quite large,
all of the predicted values from these two methods
are still in the CPI range between 100 and 176. So it
can be said that the ARIMA and ANN forecast
results are at a reasonable level and can still be
calculated.
ACKNOWLEDGEMENTS
The authors would like to thank the Faculty of
Computer Science, Universitas Pembangunan
Nasional "Veteran" Jawa Timur, for its support to
publish this research.
REFERENCES
Adebiyi, A. A., Adewumi, A., & Ayo, C. (2014). Stock
price prediction using the ARIMA model. Proceedings
- UKSim-AMSS 16th International Conference on
Computer Modelling and Simulation, UKSim 2014.
doi:10.1109/UKSim.2014.67
Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M.
(2016). Time series analysis : forecasting and control
(5th edition). New Jersey: Wiley.
Deswina, A. P., & Desmita, E. (2015). Application of The
Box-Jenkins Method in Predicting the Consumer Price
Index in Pekanbaru City (Penerapan Metode Box-
Jenkins Dalam Meramalkan Indeks Harga Konsumen
Di Kota Pekanbaru). Jurnal Sains Matematika dan
Statistika, 1(1), 39-47.
Djawoto, D. (2010). Advanced Forecasting of Inflation
with Auto Regressive Integrated Moving Average
(ARIMA) Method (Peramalan Laju Inflasi Dengan
Metode Auto Regressive Integrated Moving Average
(ARIMA)). Jurnal Ekonomi dan Keuangan, 14(4),
524-538.
Domingos S. de O. Santos Júnior, J. F. (2019). An
intelligent hybridization of ARIMA with machine
learning models for time series forecasting.
Knowledge-Based Systems, 175, 72-86.
Fitriani, B. E., Ispriyanti, D., & Prahutama, A. (2015).
Forecasting Loads of Electricity Usage in Central Java
and the Special Region of Yogyakarta Using Hybrid
Autoregressive Integrated Moving Average - Neural
Network (Peramalan Beban Pemakaian Listrik Jawa
Tengah dan Daerah Istimewa Yogyakarta dengan
Menggu). Jurnal Gaussian, 745-754.
Hiteshi Tandon, P. R. (2020). Coronavirus (COVID-19):
ARIMA based time-series analysis to forecast near
future. Cornell University.
Janah, S. N., Sulandari, W., & Wiyono, S. B. (2014).
Application of The ARIMA Backpropagation Hybrid
Model for Price Forecasting of Indonesian Gabah
(Penerapan Model Hybrid Arima Backpropagation
Untuk Peramalan Harga Gabah Indonesia). Media
Statistka, 7(2), 63-69.
Mohamed, J. (2020). Time Series Modeling and
Forecasting of Somaliland Consumer Price Index: A
Comparison of ARIMA and Regression with ARIMA
Errors. American Journal of Theoretical and Applied
Statistics, 9(4), 143-153.
Nopirin. (1987). Monetary Economy (Ekonomi Moneter),
Book II . Yogyakarta: BPFE-UGM.
Pimpi, L. (2013). Implementation of ARIMA Method to
Forecast Indonesia Consumer Price Index (CPI) 2013
(Penerapan Metode ARIMA dalam Meramalkan
Indeks Harga Konsumen (IHK) Indonesia Tahun
2013). Paradigma, 17(2), 35-46.
Susilokarti, D., Arif, S. S., Susanto, S., & Sutiarso, L.
(2015). Comparative Study of Rainfall Prediction Fast
Fourier Transformation (FFT) Method, Autoregressive
Integrated Moving Average (ARIMA) and Artificial
Neural Network (ANN) (Studi Komparasi Prediksi
Curah Hujan Metode Fast Fourier Transformation
(FFT), Autore). agriTECH, 241-247.
Ümit Çavuş Büyükşahin, Ş. E. (2019). Improving
forecasting accuracy of time series data using a new
ARIMA-ANN hybrid method and empirical mode
decomposition. Neurocomputing, 361, 151-163.
doi:https://doi.org/10.1016/j.neucom.2019.05.099
Wigati, Y., Rais, R., & Utami, I. T. (2015). Time Series
Modeling with the ARIMA Process for Prediction of
Consumer Price Index (CPI) In Palu - Central
Sulawesi (Pemodelan Time Series Dengan Proses
Arima Untuk Prediksi Indeks Harga Konsumen (IHK)
Di Palu – Sulawesi Tengah). Jurnal Ilmiah
Matematika dan Terapan, 12(2), 149-159.
CESIT 2020 - International Conference on Culture Heritage, Education, Sustainable Tourism, and Innovation Technologies