controllers can use other control methods to ensure
that motor speed is stable on flat and sloping
surfaces, and to improve processing speed and
object detection accuracy. The offline and realtime
test results show fairly accurate results where a
wheelchair is able to detect objects in the form of
walls at an angle of less than 90 degrees.
Incorporation of additional sensors such as an
ultrasonic sensor to detect paths before the IMU
sensor detects surface slope is necessary. The motor
used must be equipped with a speed reading so that
the accuracy of the speed reading can be better.
ACKNOWLEDGEMENTS
This research was supported by Technical
Implementation Unit for Instrumentation
Development, Indonesian Institute of Sciences,
Department of Electrical Engineering, Universitas
Padjadjaran, and Toba Research Center, Indonesia.
REFERENCES
Aktar, N., Jaharr, I., & Lala, B., 2019. Voice Recognition
based intelligent Wheelchair and GPS Tracking
System. 2nd International Conference on Electrical,
Computer and Communication Engineering, ECCE
2019, February.
https://doi.org/10.1109/ECACE.2019.8679163.
Al-Neami, A. Q. H., & Ahmed, S. M., 2018. Controlled
Wheelchair System Based on Gyroscope Sensor for
Disabled Patients. Biosciences Biotechnology
Research Asia, 15(4), 921–927.
https://doi.org/10.13005/bbra/2703.
Alkhalid, F. F., & Oleiwi, B. K., 2019. Smart Autonomous
Wheelchair Controlled by Voice Commands-Aided by
Tracking System. Iraqi Journal of Computer,
Communication, Control and System Engineering, 82–
87. https://doi.org/10.33103/uot.ijccce.19.1.10
Aquilina, M., Bugeja, M. K., & Fabri, S. G., 2019. Smart
wheelchairs: Using robotics to bridge the gap between
prototypes and cost-effective set-ups. ICINCO 2019 -
Proceedings of the 16th International Conference on
Informatics in Control, Automation and Robotics,
2(Icinco), 181–189.
https://doi.org/10.5220/0007796801810189.
Dakhilallah, B., Alrashdi, S., Rao, K. P., & Alotaibi, N.
D., 2019. Smart Navigation and Control System for
Electric Wheelchair American Journal of Engineering
Research (AJER). 4, 90–94.
Hasriyani, & H., 2018. Bab II tinjauan pustaka BBLR. 5,
1–40. http://eprints.undip.ac.id/62287/4/BAB_II.pdf
Ii, B. A. B., 2001. Universitas Sumatera Utara 6. 1(2), 6–
38.
Manjunath, G., 2018. Autonomous Wheelchair with a
Smart Driving Mode and a Wi-Fi Positioning System.
April.
Pingali, T. R., Lemaire, E. D., & Baddour, N., 2019.
Ultrasonic tethering to enable side-by-side following
for powered wheelchairs. Sensors (Switzerland),
19(1). https://doi.org/10.3390/s19010109
Pu, J., Jiang, Y., Xie, X., Chen, X., Liu, M., & Xu, S.,
2018. Low cost sensor network for obstacle avoidance
in share-controlled smart wheelchairs under daily
scenarios. Microelectronics Reliability, 83(March),
180–186.
https://doi.org/10.1016/j.microrel.2018.03.003
Rojas, M., Ponce, P., & Molina, A., 2018. A fuzzy logic
navigation controller implemented in hardware for an
electric wheelchair. International Journal of Advanced
Robotic Systems, 15(1), 1–12.
https://doi.org/10.1177/1729881418755768
Roslan, M., Yahya, M., Ahmad, Z., Hani, A., & Mokhtar,
I., 2017. International Journal of Advanced and
Applied Sciences. Order, 14(4), 18.
Saputra, D. A., 2013. Simulasi Pemrograman Sistem
Pengendali Kecepatan Pada Rancang Bangun Mobil
Remote Kontrol Menggunakan PWM Berbasis Sensor
Ultrasonik HC-SR04 dan Mikrokontroler Arduino.
Universitas Muhammadiyah Surakarta.
https://doi.org/10.1017/CBO9781107415324.004
Setyawan, B., Andryana, S., & Winarsih, W., 2018.
Sistem Deteksi Menggunakan Sensor Ultrasonik
berbasis Arduino mega 2560 dan Processing untuk
Sistem Keamanan Rumah. J I M P - Jurnal
Informatika Merdeka Pasuruan, 3(3), 15–20.
https://doi.org/10.37438/jimp.v3i3.183
Subroto, T., & Sholihah, W., 2018. Analisis Hambatan
Belajar Pada Materi Trigonometri Dalam Kemampuan
Pemahaman Matematis Siswa. IndoMath: Indonesia
Mathematics Education, 1(2), 109.
A. Turnip, M. A. Suhendra and Mada Sanjaya W. S.,
2015. Brain-controlled wheelchair based EEG-SSVEP
signals classified by nonlinear adaptive filter. IEEE
International Conference on Rehabilitation Robotics
(ICORR), Singapore, 2015, pp. 905-908, doi:
10.1109/ICORR.2015.7281318.
M. Turnip et al., "An application of online ANFIS
classifier for wheelchair based brain computer
interface," 2015 International Conference on
Automation, Cognitive Science, Optics, Micro
Electro-Mechanical System, and Information
Technology (ICACOMIT), Bandung, 2015, pp. 134-
137, doi: 10.1109/ICACOMIT.2015.7440192.
A. Turnip, A. I. Simbolon, M. F. Amri and M. A.
Suhendra, "Utilization of EEG-SSVEP method and
ANFIS classifier for controlling electronic
wheelchair," 2015 International Conference on
Technology, Informatics, Management, Engineering &
Environment (TIME-E), Samosir, 2015, pp. 143-146,
doi: 10.1109/TIME-E.2015.7389763.
A. Turnip, T. Hidayat and D. E. Kusumandari,
"Development of brain-controlled wheelchair
supported by raspicam image processing based