Figure 3: This caption has one line so it is centered.
The diagram above is the result of a Preliminary
Study conducted by the author in the development of
solid electrolytes by reviewing material
modifications, the method used and the conductivity
value resulting from each synthesis result. Based on
the diagram, the authors assume that for further
development Lithium Titanium Phosphate (LTP)
materials can be obtained from Li4P2O7 and TiO2
using LiI Doping. Meanwhile, the synthesis method
used can use the solid state reaction method.
5 CONCLUSIONS
Lithium-ion Batteries bear several vulnerabilities
caused by its liquid electrolytes, especially in terms
of safety and life cycle. To anticipate this
vulnerability, solid electrolytes were developed as a
substitute for liquid electrolytes and t lithium ion
batteries into an all-solid state battery. Solid
electrolytes can be obtained from several inorganic
materials which have the characteristics of high
conductivity values at room temperature and stable
electrochemical properties and have a high level of
security. Based on the preliminary study conducted in
this paper, Lithium Titanium Phosphate has good
potential by modifying the appropriate synthesis
method and the addition of doping. To be used as a
basis for solid electrolytes in lithium ion batteries.
ACKNOWLEDGEMENTS
This research was supported by the Capacity Building
Program of the Faculty of Defense Technology,
Indonesia Defense University.
REFERENCES
Peraturan Pemetintah Republik Indonesia Nomor 76 Tahun
2014 tentang Mekanisme Imbal Dagang Dalam
Pedangadaan Alat Peralatan Pertahanan dan
Keamanan Dari Luar Negeri.
Kementerian Pertahanan.., 2015. Buku Putih Pertahanan
Indonesia. Jakarta.
Hudaya, Chairul., 2011. Peranan Riset Baterai Sekunder
dalam Mendukung Penyediaan Energi Bersih Di
Indonesia 2025; Proceeding Olimpiade Karya Tulis
Inovatif (OKTI).
Dirican, Mahmut. Chaoyi Yan, Pei Zhu, Xiangwu Zhang.,
2019. “Composite solid electrolytes for all-solid-state
lithium batteries” Journal of Material Science and
Engineering, Vol. 136, pp.27-46.
Wenzel, S., T. Leichtweiss, D. Krüger, J. Sann and J.
Janek., 2015. “Interphase Formation On Lithium Solid
Electrolytes-An in Situ Approach to Study Interfacial
Reaction by Photoelectron Spectroscopy” Journal of
Solid State Ionics., Vol. 278, pp.98-105.
Dirican, Mahmut. Chaoyi Yan, Pei Zhu, Xiangwu Zhang.,
2019. “Composite solid electrolytes for all-solid-state
lithium batteries” Journal of Material Science and
Engineering., Vol. 136, pp.27-46.
Pampal, E.S., Stojanovsk, E., Simon, Kilic, B. A., 2015.
“A Review of Nanofibrous Structures in Lithium Ion
Batteries” Journal of Power Sources., Vol. 300,
pp.199–215.
Wang, Q Y, Xu L Y, Zhang Y L., 2014. “Surface
mODIfication of Li1.6(Fe0.2Ni0.2Mn0.6) O2.6 by
V2O5-Coating” Journal of Rare Metal Materials and
Engineering., Vol..43 (3) p.530.
Robert G, Malugani J P and Saida A., 1981. Solid State
Ionics. pp.3 - 4: 311.
Rodger A R, Kuwano J and West A R., 1985. Solid State
lonics p.15: 185.
Kementerian Riset dan Teknologi Republik Indonesia.,
2006. Indonesia 2005 - 2025 Buku Putih Penelitian,
Pengembangan dan Penerapan Ilmu Pengetahuan dan
Teknologi Bidang Pertahanan dan Keamanan. Jakarta.
Zhang, Z., Y. Shao, B. V. Lotsch, Y. Hu, H. Li, J. Janek, C.
Nan, L. Nazar, J. Maier, M. Armand and L. Chen.,
2018. “New Horizons for Inorganic Solid State Ion
Conductors” Journal of Energy & Environmental Sci.,
Vol. 11(8) doi: 10.1039/C8EE01053F .
Rahayu, Imam., Rukiah, Diana Rakhmawaty Eddy, Atiek
Rostika Noviyanti, Sahrul Hidayat., 2018.
“Peningkatan Konduktivitas Baterai ion litium Besi
Fosfat Dengan Polianilina Didoping Asam Format”
Vol. 6 No. 3: pp.106-110.
Manthiram, A., X. Yu, and S. Wang., 2017. “Lithium
battery chemistries enabled by solidstate electrolytes”
Nature Reviews Materials., vol. 2 (4).
Marfuatun., 2011. “Membran Elektrolit Untuk Aplikasi
Baterai Ion Lithium” Prosiding Seminar Nasional
Penelitian, Pendidikan dan Penerapan MIPA
Makhsun dan Evvy Kartini., 2010. “Sintesis dan
Karakterisasi Elektrolit Padat Berbasis Gelas Lithium