ACKNOWLEDGMENTS
The authors would like to thank Ministry of Science
and Technology, Taiwan for financially supporting
this study (MOST 107-2221-E-259- 001-MY2 and
107-3017-F-009-002), and a giving thanks to Pusat
Penelitian dan Pengabdian Masyarakat, Politeknik
Negeri Jakarta (PPPM PNJ nomor B.142 /PL3.18
/PN.00.03 /2020) and also for the Ministry of
Research and Technology, Research Council, and the
National Innovation Republic of Indonesia
REFERENCES
Chen, K. J. et al. (2017) ‘GaN-on-Si power technology:
Devices and applications’, IEEE Transactions on
Electron Devices. doi: 10.1109/TED.2017.2657579.
Fachruddin, et al. (2020) ‘Surface Modification of
Magnetic TiO
2
Core-Shell with Doped Cerium for
Enhancement of Photocatalytic Performance’, Eastern-
European Journal of Enterprise Technologies. doi:
10.15587/1729-4061.2020.203186
Gupta, P. et al. (2016) ‘Layered transition metal
dichalcogenides: promising near-lattice-matched
substrates for GaN growth’, Scientific Reports. doi:
10.1038/srep23708.
Hanada, T. (2009) ‘Basic Properties of ZnO, GaN, and
Related Materials’, in. doi: 10.1007/978-3-540-88847-
5_1.
Joshin, K. et al. (2014) ‘Outlook for GaN HEMT
technology’, Fujitsu Scientific and Technical Journal.
Kawashima, T. et al. (1997) ‘Optical properties of
hexagonal GaN’, Journal of Applied Physics. doi:
10.1063/1.365671.
Kimura, R. et al. (2005) ‘Thick cubic GaN film growth
using ultra-thin low-temperature buffer layer by RF-
MBE’, Journal of Crystal Growth, 278(1–4), pp. 411–
414. doi: 10.1016/j.jcrysgro.2005.01.058.
Kukushkin, S. A. et al. (2008) ‘Substrates for epitaxy of
gallium nitride: New materials and techniques’,
Reviews on Advanced Materials Science.
Liu, L. and Edgar, J. H. (2002) ‘Substrates for gallium
nitride epitaxy’, 37, pp. 61–127.
Mánuel, J. M. et al. (2010) ‘Structural and compositional
homogeneity of InAlN epitaxial layers nearly lattice-
matched to GaN’, Acta Materialia. doi:
10.1016/j.actamat.2010.04.001.
Poust, B. D. et al. (2003) ‘SiC substrate defects and III-N
heteroepitaxy’, Journal of Physics D: Applied Physics.
doi: 10.1088/0022-3727/36/10A/321.
Su, M., Chen, C. and Rajan, S. (2013) ‘Prospects for the
application of GaN power devices in hybrid electric
vehicle drive systems’, Semiconductor Science and
Technology. doi: 10.1088/0268-1242/28/7/074012.
Susanto, I., Tsai, C., et al. (2019) ‘Morphology and surface
stability of GaN thin film grown on the short growth
time by Plasma Assisted Molecular Beam Epitaxy’, J.
Phs : Conference Seriese, 1364(012067). doi:
10.1088/1742-6596/1364/1/012067.
Susanto, I., Tsai, C.-Y., et al. (2019) ‘The influence of 2D
MoS
2
layers on the growth of GaN films by plasma-
assisted molecular beam epitaxy’, Applied Surface
Science, 496(July), p. 143616. doi:
10.1016/j.apsusc.2019.143616.
Trampert, A. (2002) ‘Heteroepitaxy of dissimilar materials:
Effect of interface structure on strain and defect
formation’, in Physica E: Low-Dimensional Systems
and Nanostructures. doi: 10.1016/S1386-
9477(02)00317-X.
Wan, Y. et al. (2018) ‘Epitaxial Single-Layer MoS
2
on GaN
with Enhanced Valley Helicity’, Advanced Materials.
doi: 10.1002/adma.201703888.
Würtele, M. A. et al. (2011) ‘Application of GaN-based
ultraviolet-C light emitting diodes - UV LEDs - for
water disinfection’, Water Research. doi:
10.1016/j.watres.2010.11.015.
Zhang, Z. et al. (2018) ‘Interface Engineering of Monolayer
MoS
2
/GaN Hybrid Heterostructure: Modified Band
Alignment for Photocatalytic Water Splitting
Application by Nitridation Treatment’, ACS Applied
Materials and Interfaces. doi: 10.1021/acsami.8b01286.