Program for Excellent Undergraduate (PMDSU)
from The Ministry of Research, Technology, and
Higher Education of The Republic of Indonesia.
REFERENCES
Alba, K., Laws, A. P., & Kontogiorgos, V. (2015). Isolation
and characterization of acetylated LM-pectins extracted
from okra pods. Food Hydrocoll, 43, 726–735.
https://doi.org/10.1016/j.foodhyd.2014.08.003
Axelos, M., Thibault, J., & Lefebvre, J. (1989). Structure of
citrus pectins and viscometric study of their solution
properties. Int. J. Biol. Macromol., 11, 186–191.
Chan, S. Y., Choo, W. S., Young, D. J., & Loh, X. J. (2017).
Pectin as a rheology modifier: Origin, structure,
commercial production and rheology. Carbohydr.
Polym., 161, 118–139.
https://doi.org/10.1016/j.carbpol.2016.12.033
Constenla, D., & Lozano, J. E. (2003). Kinetic model of
pectin demethylation. Lat. Am. Appl. Res., 33, 91–96.
Cullen, P. J. (2012). Fluid rheology in novel thermal and
non-thermal processes. In Novel Thermal And Non-
Thermal Technologies For Fluid Foods (pp. 35–61).
Academic Press. https://doi.org/10.1016/B978-0-12-
381470-8.00003-7
De Oliveira, C. F., Giordani, D., Gurak, P. D., Cladera-
Olivera, F., & Marczak, L. D. F. (2015). Extraction of
pectin from passion fruit peel using moderate electric
field and conventional heating extraction methods.
Innov Food Sci Emerg Technol, 29, 201–208.
https://doi.org/10.1016/j.ifset.2015.02.005
Dimopoulou, M., Alba, K., & Kontogiorgos, V. (2019).
Pectin recovery and characterization from lemon juice
waste streams. J Sci FoodAgric.
https://doi.org/10.1002/jsfa.9891
Fertonani, H. C. R., Scabio, A., Carneiro, E. B. B.,
Schemim, M. H. C., Nogueira, A., & Wosiacki, G.
(2009). Extraction model of low methoxyl pectin from
apple pomace effects of acid concentration and time on
the process and the product. Braz. Arch. Biol. Technol,
52(1), 177–185.
Iglesias, M. T., & Lozano, J. E. (2004). Extraction and
characterization of sunflower pectin. J Food Eng, 62,
215–223. https://doi.org/10.1016/S0260-
8774(03)00234-6
Kalegowda, P., Singh Chauhan, A., & Mysore NanjarajUrs,
S. (2017). Opuntia dillenii (Ker-gawl) haw fruit peel
pectin: Physicochemical, rheological, and functional
behavior. J. Food Process. Preserv., 41(5), 1–8.
https://doi.org/10.1111/jfpp.13165
Karimi, N., Sani, A. M., & Pourahmad, R. (2016). Influence
of carboxy methyl cellulose (CMC) and pectin on
rheological, physical stability and sensory properties of
milk and concentrated jujuba mixture. J. Food Meas.
Charact., 10(2), 396–404.
https://doi.org/10.1007/s11694-016-9318-z
Khan, M., Nakkeeran, E., & Umesh-Kumar, S. (2012).
Potential Application of Pectinase in Developing
Functional Foods. Annu Rev Food Sci Technol
, 4(1),
21–34. https://doi.org/10.1146/annurev-food-030212-
182525
Kontogiorgos, V., Margelou, I., Georgiadis, N., &
Ritzoulis, C. (2012). Rheological characterization of
okra pectins. Food Hydrocoll, 29(2), 356–362.
https://doi.org/10.1016/j.foodhyd.2012.04.003
Li, X., Al-Assaf, S., Fang, Y., & Phillips, G. O. (2013).
Characterisation of commercial LM-pectin in aqueous
solution. Carbohydr. Polym., 92(2), 1133–1142.
https://doi.org/10.1016/j.carbpol.2012.09.100
May, C. D. (1990). Industrial pectins: sources, production
and applications. Carbohydr. Polym., 12(1), 79–99.
https://doi.org/10.1016/0144-8617(90)90105-2
Methacanon, P., Krongsin, J., & Gamonpilas, C. (2014).
Pomelo (Citrus maxima) pectin: Effects of extraction
parameters and its properties. Food Hydrocoll, 35, 383–
391. https://doi.org/10.1016/j.foodhyd.2013.06.018
Miyamoto, A., & Chang, K. C. (1992). Extraction and
physicochemical characterization from sunflower head
residues of pectin. J. Food Sci., 57(6), 1439–1443.
Morales-Contreras, B. E., Wicker, L., Rosas-Flores, W.,
Contreras-Esquivel, J. C., Gallegos-Infante, J. A.,
Reyes-Jaquez, D., & Morales-Castro, J. (2020). Apple
pomace from variety “Blanca de Asturias” as
sustainable source of pectin: Composition, rheological,
and thermal properties. LWT, 117. https://doi.org/
10.1016/j.lwt.2019.108641
Morris, G. A., Foster, T. J., & Harding, S. E. (2000). The
effect of the degree of esterification on the
hydrodynamic properties of citrus pectin. Food
Hydrocoll, 14(3), 227–235. https://doi.org/10.1016/
S0268-005X(00)00007-2
Ngouémazong, E. D., Christiaens, S., Shpigelman, A., Van
Loey, A., & Hendrickx, M. (2015). The emulsifying
and emulsion-stabilizing properties of pectin: A
Review. Compr. Rev. Food Sci. Food Saf., 14(6), 705–
718. https://doi.org/10.1111/1541-4337.12160
Pippen, E. L., Schultz, T. H., & Owens, H. S. (1953). Effect
of degree of esterification on viscosity and gelation
behavior of pectin. J. Colloid Sci., 8(1), 97–104.
https://doi.org/10.1016/0095-8522(53)90010-5
Rao, M. A. (2007). Rheology of Fluid and Semisolid Foods:
Principles and Applications (2nd ed.). Springer.
Razak, R. A., Karim, R., Sulaiman, R., & Hussain, N.
(2018). Effects of different types and concentration of
hydrocolloids on mango filling. Int Food Res J, 25
(3),
1109–1119.
Round, A. N., Rigby, N. M., MacDougall, A. J., & Morris,
V. J. (2010). A new view of pectin structure revealed
by acid hydrolysis and atomic force microscopy.
Carbohydr. Res., 345(4), 487–497. https://doi.org/
10.1016/j.carres.2009.12.019
Saha, D., & Bhattacharya, S. (2010). Hydrocolloids as
thickening and gelling agents in food: a critical review.
Int. J. Food Sci. Technol., 47(6), 587–597.
https://doi.org/10.1007/s13197-010-0162-6
Singh, R., & Heldman, D. (2009). Introduction to Food
Engineering (4th ed.). Academic Press.