72, 11–26. https://doi.org/10.1016/j.foodhyd.2017.04.0
34
Aswathanarayan, J. B., & Vittal, R. R. (2019).
Nanoemulsions and their potential applications in food
industry. Frontiers in Sustainable Food Systems,
3(November), 1–21. https://doi.org/10.3389/fsufs.20
19.00095
Ayu, D. F., Andarwulan, N., Hariyadi, P., & Purnomo, E.
H. (2016). Photodegradation kinetics of chlorophyll,
tocopherol , and carotenoid in red palm oil. Agritech,
36(2), 117–127.
Banasaz, S., Morozova, K., Ferrentino, G., & Scampicchio,
M. (2020). Encapsulation of Lipid-Soluble Bioactives
by Nanoemulsions. Molecules. https://doi.org/10.3390/
molecules25173966
Charoen, R., Jangchud, A., Jangchud, K., Harnsilawat, T.,
Naivikul, O., & McClements, D. J. (2011). Influence of
biopolymer emulsifier type on formation and stability
of rice bran oil-in-water emulsions: Whey protein, gum
arabic, and modified starch. Journal of Food Science,
76(1), E165–E172. https://doi.org/10.1111/j.1750-
3841.2010.01959.x
Chong, W. T., Tan, C. P., Cheah, Y. K., Lajis, A. F. B.,
Dian, N. L. H. M., Kanagaratnam, S., & Lai, O. M.
(2018). Optimization of process parameters in
preparation of tocotrienol-rich red palm oil-based
nanoemulsion stabilized by Tween80-Span 80 using
response surface methodology. PLoS ONE, 13(8), 1–
22. https://doi.org/10.1371/journal.pone.0202771
Dauqan, E., Sani, H. A., Abdullah, A., Muhamad, H., &
Md. Top, A. G. (2011). Vitamin E and beta carotene
composition in four different vegetable oils. American
Journal of Applied Sciences, 8(5), 407–412.
de ALMEIDA, D. T., Viana, T. V., Costa, M. M., Silva, C.
D. S., & Feitosa, S. (2019). Effects of different storage
conditions on the oxidative stability of crude and
refined palm oil, olein and stearin (Elaeis guineensis).
Food Science and Technology, 39, 211–217.
https://doi.org/10.1590/fst.43317
Dybowska, B. E. (2011). Whey protein-stabilized emulsion
properties in relation to thermal modification of the
continuous phase. Journal of Food Engineering,
104(1), 81–88. https://doi.org/10.1016/j.jfoodeng.20
10.11.030
Gasa-Falcon, A., Odriozola-Serrano, I., Oms-Oliu, G., &
Martín-Belloso, O. (2020). Nanostructured lipid-based
delivery systems as a strategy to increase functionality
of bioactive compounds. Foods, 9(3).
https://doi.org/10.3390/foods9030325
Loganathan, R., Subramaniam, K. M., Radhakrishnan, A.
K., Choo, Y. M., & Teng, K. T. (2017). Health-
promoting effects of red palm oil: Evidence from
animal and human studies. Nutrition Reviews, 75(2),
98–113. https://doi.org/10.1093/nutrit/nuw054
Matalanis, A., Jones, O. G., & McClements, D. J. (2011).
Structured biopolymer-based delivery systems for
encapsulation, protection, and release of lipophilic
compounds. Food Hydrocolloids, 25(8), 1865–1880.
https://doi.org/https://doi.org/10.1016/j.foodhyd.2011.
04.014
McClements, D. J., Decker, E. A., & Weiss, J. (2007).
Emulsion-based delivery systems for lipophilic
bioactive components. Journal of Food Science.
https://doi.org/10.1111/j.1750-3841.2007.00507.x
McClements, David Julian. (2007). Critical review of
techniques and methodologies for characterization of
emulsion stability. Critical Reviews in Food Science
and Nutrition, 47(7), 611–649. https://doi.org/10.1080/
10408390701289292
McClements, David Julian. (2009). Biopolymers in Food
Emulsions. In Modern Biopolymer Science (pp. 129–
166). Elsevier Inc. https://doi.org/10.1016/B978-0-12-
374195-0.00004-5
McClements, David Julian. (2010). Emulsion Design to
Improve the Delivery of Functional Lipophilic
Components. Annual Review of Food Science and
Technology, 1, 241–269. https://doi.org/10.1146/annu
rev.food.080708.100722
Nagendran B., Unnithan U., Choo, Sundram, K. (2000).
Charasteristics of red palm oil, a carotene-and vitamin
E- rich refined oil for food uses. Food and Nutrition
Bulletin, 21(2), Food and Nutrition Bulletin. 21(2):189.
https://doi.org/10.1177/156482650002100213
Özbek, Z. A., & Günç Ergönül, P. (2017). A review on
encapsulation of oils. Celal Bayar Üniversitesi Fen
Bilimleri Dergisi, 13(2), 293–309. https://doi.org/10.1
8466/cbayarfbe.313358
Qian, C., & McClements, D. J. (2011). Formation of
nanoemulsions stabilized by model food-grade
emulsifiers using high-pressure homogenization:
Factors affecting particle size. Food Hydrocolloids,
25(5), 1000–1008. https://doi.org/10.1016/j.foodhyd.2
010.09.017
Ravindran, S., Williams, M. A. K., Ward, R. L., & Gillies,
G. (2018). Understanding how the properties of whey
protein stabilized emulsions depend on pH, ionic
strength and calcium concentration, by mapping
environmental conditions to zeta potential. Food
Hydrocolloids, 79, 572–578. https://doi.org/10.1016/
j.foodhyd.2017.12.003
Scrimshaw, N. S. (2000). Nutritional potential of red palm
oil for combating vitamin A deficiency. Food and
Nutrition Bulletin, 21(2), 195–201. https://doi.org/
10.1177/156482650002100214
Sohail, M., Ahmed, T., Akhtar, S., Durrani, Y., & Section,
F. B. (2010). Effect of sunlight on quality and stability
of dietary oils and fats, 43(3), 123–125.
Wang, Z., Neves, M. A., Isoda, H., & Nakajima, M. (2015).
Preparation and Characterization of Micro / Nano-
emulsions Containing Functional Food Components
*
. Japan Journal of Food Engineering, 16(4), 263–276.
Wilde, P., Mackie, A., Husband, F., Gunning, P., & Morris,
V. (2004). Proteins and emulsifiers at liquid interfaces.
Advances in Colloid and Interface Science, 108–109,
63–71. https://doi.org/10.1016/j.cis.2003.10.011
Zhang, Y., Yang, N., Xu, Y., Wang, Q., Huang, P.,
Nishinari, K., & Fang, Y. (2019). Improving the
stability of oil body emulsions from diverse plant seeds
using sodium alginate. Molecules. https://doi.org/
10.3390/molecules24213856